Název projektu: Zlepšení podmínek pro využívání ICT ve výuce
Registrační číslo projektu: CZ.1.07/1.1.02/01.0135

TECHNICKÉ KRESLENÍ
-SOLIDWORKS-

Zpracoval: Ing. Zdeněk Železný

Tento projekt je spolufinancován ESF a státním rozpočtem ČR.
Obsah:

1. lekce Úvod do programu SolidWorks
2. lekce Pracovní prostředí SolidWorks
3. lekce Manager nástroje v SolidWorks
4. lekce Zobrazení a kreslení modelů
5. lekce Skicování v SolidWorks
6. lekce Zásady skicování v SolidWorks
7. lekce Entity a jejich vazby
8. lekce Skicování pomocí příkazů
9. lekce Konstrukční geometrie
10. lekce Zadávání tolerancí, rovnic, stejných hodnot
11. lekce Kótování entity k ose
12. lekce Hromadné přidávání parametrů a vztahů
13. lekce Kreslení a kótování křivek
14. lekce Definování vazeb skicí
15. lekce Lineární pole skicí
16. lekce Chyby při skicování a jejich řešení
17. lekce 3D skica, zásady správného kreslení
18. lekce Tvorba dílu z 2D skici
19. lekce Tvorba dílu z 2D skici - přidávání rotací
20. lekce Tvorba 3D dílu, jeho úprava
21. lekce Referenční geometrie
22. lekce Tvorba rovin pomocí parametrů
23. lekce Tvorba os a rovin pod úhlem
24. lekce Rovina ke křivce, modelování dílů
25. lekce Uživatelské prostředí a materiál dílů
26. lekce Zaoblení hran 3D dílu
27. lekce Modelování na plochách dílu
28. lekce Osmihranný klíč
<table>
<thead>
<tr>
<th>Lekce</th>
<th>Název práce</th>
</tr>
</thead>
<tbody>
<tr>
<td>29. lekce</td>
<td>Modelování ve dvou rovinách</td>
</tr>
<tr>
<td>30. lekce</td>
<td>Šestihranný klíč – samostatná práce č. 3</td>
</tr>
<tr>
<td>31. lekce</td>
<td>Modelování ve třech rovinách</td>
</tr>
<tr>
<td>32. lekce</td>
<td>Modelování – příložka</td>
</tr>
<tr>
<td>33. lekce</td>
<td>Modelování využitím rotace osy</td>
</tr>
<tr>
<td>34. lekce</td>
<td>Zkosení hran vnějšího šestihranu</td>
</tr>
<tr>
<td>35. lekce</td>
<td>Zkosení hran vnitřního šestihranu</td>
</tr>
<tr>
<td>36. lekce</td>
<td>Samostatná práce č. 4 – Hranol s vnitřním šestihranem</td>
</tr>
<tr>
<td>37. lekce</td>
<td>Modelování tlačené pružiny</td>
</tr>
<tr>
<td>38. lekce</td>
<td>Modelování s použitím referenční geometrie</td>
</tr>
<tr>
<td>39. lekce</td>
<td>Kancelářská sponka – samostatná práce č. 5</td>
</tr>
<tr>
<td>40. lekce</td>
<td>Plechový díl, tvorba výkresu</td>
</tr>
<tr>
<td>41. lekce</td>
<td>Plechový díl převedením z 3D modelu</td>
</tr>
<tr>
<td>42. lekce</td>
<td>Tvorba krabičky s víkem</td>
</tr>
<tr>
<td>43. lekce</td>
<td>Tvorba lemů</td>
</tr>
<tr>
<td>44. lekce</td>
<td>Tvorba ohybů, obrub a výkres. dokumentace</td>
</tr>
<tr>
<td>45. lekce</td>
<td>Sponka ke kliprámu I</td>
</tr>
<tr>
<td>46. lekce</td>
<td>Sponka ke kliprámu II</td>
</tr>
</tbody>
</table>

Integrovaná střední škola polygrafická, Brno, Šmahova 110
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

59. lekce Tvorba háčku……………………………………………………………………………. 172
60. lekce …………………………………………………………………………………………… 177
61.-62. lekce Komolý kužel – plášť……………………………………………………………. 179
63.-64. lekce Úchytka – samostatná práce ……………………………………………………. 182
65.-66. lekce Krabička – samostatná práce…………………………………………………. 185
Seznam použité literatury…………………………………………………………………………. 185
1. lekce

ÚVOD DO PROGRAMU SOLIDWORKS

Program SolidWorks je objemový i plošný modelář, kromě obvyklých funkcí pro strojírenství disponuje i pokročilými funkcemi pro návrhy plastových dílů, forem, svařenců i plechových dílů, proto se používá i pro navrhování v obalové technice. SolidWorks podporuje komunikaci s dalšími CAD programy, má technologii pro práci s rozsáhlými sestavami, včetně automatického generování výkresové dokumentace. Naším cílem je seznámit se s nejpoužívanějším základem tohoto programu, především při tvorbě jednotlivých dílů, jejich výkresové dokumentace a sestav dílů.

1. ORIENTACE V SOLIDWORKS

Po spuštění programu SolidWorks se otevře úvodní stránka, ve které je v horní části umístěn pruh rozbalovací nabídky, v něm jsou možnosti otevřít rozbalovací roletky Soubor, Zobrazit, Nástroje a Nápověda.

Otevřeme → Soubor → Nový, otevře se nám dialogové okno Nový dokument SolidWorks
V něm máme možnost si vybrat mezi Dílem, Sestavou a Výkresem. Na začátku budeme pracovat vždy na vytváření jednotlivých dílů, potom budeme vytvářet jejich technické výkresy a nakonec můžeme jednotlivé díly seskupit do sestavy.

→ Označíme Díl → OK.

Nyní se na obrazovce nové dokumentové okno a celá řada panelů.

Pruh nabídky:

Pod jednotlivými názvy v panelu nabídek jsou skryty roletkové příkazy, ze kterých můžeme vybírat podle svých požadavků.

Pod nabídkou Soubor najdeme i z jiných programů obvyklé příkazy jako: Nový, Otevřít, Uložit, Uložit jako..., vytvořit výkres z dílu, vytvořit sestavu z dílu, ...

V nabídce Úpravy jsou příkazy typu: zpět, opakovat, vyjmout, kopírovat, vložit, odstranit, …
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

V nabídce Zobrazit najdeme kromě jiného i záložky pro různé zobrazovací režimy, například v podnabídce Změnit lze s vytvořeným modelem otáčet, posouvat jej, zvětšovat detaily i jinak s modelem manipulovat.
Nabídka Vložit nám umožní výběr aktivního příkazu převážně pro práci s dílem: Přidávat nebo odebrávat vysouváním či rotací k dílům další tvary, vkládat kusovník pomocí tabulky, …

Nabídka Okno nám umožňuje klasicky přepínat mezi otevřenými díly, otevřít pohledy ve více oknech najednou a upravovat si nabídku Okno.

Poslední je klasická nabídka Nápověda a za ní je umístěn připínací špendlík, pomocí kterého si můžeme rozbalovací nabídku trvale rozbalit v horní liště.

PODKONO ÚLOH

2. lekce
PRACOVNÍ PROSTŘEDÍ SOLIDWORKS

Zdroje Solidworks- Na kartě Začínáme můžeme otevřít Nový dokument nebo již uložený.

Začátečník může využít kurz Solidworks, jsou zde i kurzy pro pokročilé, které jsou rozděleny podle kategorií i podle zaměření. Uživatel zde najde i informace o novinkách ve vyšších verzích programu Solidworks.

V záložce Komunita můžeme komunikovat s firmami, společností i zákazníky, můžeme si vyměňovat zkušenosti a sledovat novinky.

V záložce Informační zdroje jsou odkazy na internetové stránky, na nich je informační servisní služba, kde můžeme získávat potřebné informace.

Na konci je záložka Rada dne, kde najdeme užitečné rady a typy pro usnadnění naší práce.

Knihovna návrhů – V Knihovně návrhů máme v položce Design Library široký výběr již zkonstruovaných dílů, i menších sestav, jsou zde části hydraulických i pneumatických systémů, části potrubí, lisovacích nástrojů, forem atd.

Položka Toolbox obsahuje knihovnu normalizovaných součástí, musíme mít zapnutý model SolidworksToolbox.

V Doplňkových modulech, ten najdeme v panelu Možnosti v hlavní nabídce.
Průzkumník souborů - umožní nám rychle vyhledávat uložené soubory či složky, je doplněn o další záložky, které usnadňují archivaci souborů.

Paleta pohledů - se používá pro snadné vkládání pohledů na výkresy dílů nebo sestav, vygenerování pohledů vyžaduje otevření a vybrání příslušného dílu nebo sestavy, ze kterého chceme výkres vytvářet.

Vzhled/scény - je knihovnou Vhledů a Prostředí, je využívána pro prezentaci dílů a sestav, vymodelovaný díl můžeme zobrazit v různých prostředích a s různými povrchovými úpravami, efekt se zvětší, když použijeme možnosti přidání světla. Vybranou možnost budeme přetahovat na požadované místo levým tlačítkem myši.

Uživatelské vlastnosti - tato záložka nám umožní efektivně a snadno doplňovat uživatelské vlastnosti dílů a sestav. Šablony můžeme definovat pomocí Tvůrce vlastností klepnutím myši na nápis vytvořit nyní nebo v nabídce Start → Programy → Solidworks → Nástroje Solidworks → Tvůrce záložky vlastností. Jednotlivá pole přetáhneme levým tlačítkem myši z požadovaného okna ze seznamu levého sloupcu do Skupinového ráměčku.

PRACOVNÍ PROSTŘEDÍ

![CommandManager](image)

![Záložky](image)

Integrovaná střední škola polygrafická, Brno, Šmahova 110
CommandManager

Používá se pro usnadnění přístupu k příkazům při tvorbě jednotlivých dílů, sestav a výkresů, přístup ke skupinám nástrojů máme pomocí jednotlivých záložek (Prvky, Skica, Plechový díl, ...).

Příslušné příkazy zobrazíme klepnutím levého tlačítka myši na záložku požadovaného typu, v horní části okna se zobrazí nástroje pro vybranou záložku. Při najetí myši na nějaký konkrétní nástroj se zobrazí popisek činnosti tohoto nástroje.
Pokud potřebujeme přidat nástroje do nějaké záložky, nastavíme na ní kurzor, klepneme v CommandManageru pravým tlačítkem, v zobrazeném dialogovém okně zatrhneme nabídku Upravit. V ní potom můžeme vybrat požadovaný chybějící nástroj, nebo zbytečný nástroj odstranit.

Podobně můžeme klepnutím pravého tlačítka myši na libovolnou záložku měnit i druhy zobrazených záložek.

3. lekce

MANAGER NÁSTROJE V SOLIDWORKS

STROM FeatureManageru

Strom tohoto manageru je umístěn na levé straně uživatelského prostředí SolidWorks, umožňuje rychlou a přehlednou práci při opravách nebo změnách skici, dílu nebo sestavy, včetně změn ve
výkresové dokumentaci, to nám je umožněno, protože strom obsahuje chronologický postup jejich tvorby

Ve stromu FeaturyManageru můžeme vybírat jednotlivé prvky, měnit jejich pořadí vytvoření, skrývat nebo organizovat je ve složkách. Mezi stromem a grafickou plochou existuje dynamické spojení, prvky můžeme vybírat pouze v jedné části. Symbol + ve stromu FeaturyManageru obsahuje vnořené části, pokud na něj klikneme levým tlačítkem myši, tyto vnořené části rozbalíme a zobrazíme, potom s nimi můžeme dále pracovat.

PropertyManager - Tento správce vlastností se zobrazuje automaticky v místě FeaturyManageru na levé straně uživatelského prostředí při editaci nějakého příkazu, entity modelu, sestavy nebo výkresu dílu či sestavy. Pomocí něho zadáme požadované vlastnosti, parametry a vztahy. Již zadané vlastnosti můžeme pomocí PropertyManageru zpětně měnit, můžeme také vyhledat Nápovědu pod symbolem otazníku, pokud si nejsme jisti správným postupem, nebo si neví rady s řešením nějakého problému.
ConfigurationManager nám umožňuje vytvářet různé varianty modelu dílů nebo sestav v rámci jednoho souboru. Pomocí konfigurací je možno rychle tvořit a spravovat podobné modely s různými parametry i prvky. U sestav navíc můžeme měnit použité součásti a jejich viditelnost.

DimXpertManager okótuje vybraný model ve 3D zobrazení tak, aby všechny prvky daného dílu byly plně určeny. Toto se liší od automatického kótování tím, že DimXpertManager dokáže vztáhnout kóty k námi vybrané entitě, detailu nebo prvku a navrhne tolerance, úchylky tvaru a polohy. V průběhu práce v programu Solidworks se při výběru entity modelu zobrazuje nabídka příkazů Kontextového panelu nástrojů. V průběhu práce v programu Solidworks se na grafické ploše zobrazuje nabídka příkazů a nástrojů v kontextovém panelu nástrojů.

ZOBRAZOVÁNÍ A ÚPRAVA PANELŮ NÁSTROJŮ

Otevřeme v rozbalovací nabídce → Zobrazit a zvolíme → Panely nástrojů. Příslušný pane nástrojů přidáme do uživatelského prostředí výběrem levým tlačítkem myši.
Další možností pro zobrazení panelu nástrojů je klepnutím pravého tlačítka myší na prázdnou plochu v panelu nabídek, zadáme možnost → Vlastní, v otevřeném okně vyhledáme položku panelů nástrojů, pomocí záložky Příkazy můžeme přidat zobrazení ikon příkazů do uživatelského prostředí tak, že levým tlačítkem myši ho přetáhneme do panelu nástrojů ComandManageru.

Práce s okny Pokud máme otevřeno více souborů, můžeme je zobrazit na grafické ploše najednou ve více oknech, zde také můžeme zvolit jejich rozložení, tak můžeme pracovat ve více modelech současně nebo upravovat model i výkres současně. Velice časté a vhodné je zobrazit více oken pro současné zobrazení nárysu, bokorysu, půdorysu a názorného zobrazení (např. dimetrického pohledu).
ZOBRAZOVÁNÍ A MANIPULACE S MODELY

Při modelování jednotlivých dílů potřebujeme využívat zobrazování dílů v různých pohledech, natáčet pohledy do požadované polohy, zvětšovat celek nebo jednotlivé detaily. Tyto možnosti nám umožňuje panel nástrojů Zobrazení.
4. lekce
ZOBRAZOVÁNÍ A KRESLENÍ MODELŮ

ZOBRAZOVANÍ A MANIPULACE S MODELY

Při modelování jednotlivých dílů potřebujeme využívat zobrazování dílů v různých pohledech, natáčet pohledy do požadované polohy, zvětšovat celek nebo jednotlivé detaily. Tyto možnosti nám umožňuje panel nástrojů Zobrazení.

Nyní můžeme pomocí nabídky okno si vyzkoušet jedno nebo víceoknové zobrazení, Pomocí panelu Zobrazení si nyní vyzkoušíme různé druhy pohledů z hlediska orientace i stylů zobrazení.

Standardní pohledy 3D modelu dle ISO E (evropská norma) jsou levý, přední, horní, dolní, pravý.
Tuto normu si můžeme nastavit jako základní v panelu → Možnosti → Normy skicování → karta
Vlastnosti dokumentu Normy skicování, ve které máme možnosti výběru

Pro rychlejší práci je vhodné se naučit používat vestavěné klávesové zkratky:
- Vertikální nebo horizontální rotace modelu Kurzorové klávesy ←→↑↓→
- Vertikální nebo horizontální rotace modelu o 90° SHIFT + Kurzorové klávesy ←→↑↓→
- Posouvání modelu CTRL + Kurzorové klávesy ←→↑↓→
- Zoom ven (zvětšení) Z
- Zoom dovnitř (zmenšení) z

Další klávesové zkratky můžeme vytvořit pomocí zadání → Nástroje → Vlastní → Klávesnice
nebo z místní nabídky, totu můžeme otevřít klepnutím pravým tlačítkem myši na volném místě
panelu nabídek, pod položkou Vlastní, v otevřeném okně můžeme zjistit, jaké klávesové zkratky
již mají jednotlivé příkazy v daných kategoriích nastaveny, ale také můžeme vytvořit klávesovou
zkratku vlastní.
Principy práce s myší
Pokud pracujeme se skicou, dílem nebo výkresem máme možnost přístupu k jednotlivým nástrojů pomocí pravého tlačítka myši. Při označení příslušné entity se klepnutím pravého tlačítka myši otevře pod kontextovým panelem nástrojů aktuální nabídka, to nám urychlí a usnadní přístup při vyhledávání jednotlivých příkazů.

Zákonitosti v programu Solidworks pro práci s myší:
- Vybrání entity změna barvy entity
- CTRL+Klepnutí levého tlačítka myši Vybrání více entit změna barvy všech entit
2. SKICOVÁNÍ

Při práci v programu Solidworks nejčastěji začínáme 2D skicou nebo 3Dskicou.

Podobně je vhodné při kreslení skici vycházet z počátku, tzn. Že budeme umisťovat počátek souřadného systému do vhodného bodu skici.

-Po otevření programu Solidworks zvolíme z pruhu Nabídky → Soubor → Nový, v otevřeném dialogovém okně zvolíme → Díl → OK.

Tím se nám otevře pracovní prostor programu Solidworks s příslušnými panely nástrojů.

-V záložkách CommandManageru vybereme záložku Skica, v horní části CommandManageru se otevřou použitelné nástroje, ostatní nástroje jsou nevysvícené.
5. lekce

SKICOVÁNÍ V SOLIDWORKS

2.SKICOVÁNÍ

Při práci v programu Solidworks nejčastěji začínáme 2D skicou nebo 3D skicou.

![3D skica](image)

Podobně je vhodné při kreslení skici vycházet z počátku, tzn. že budeme umísťovat počátek souřadného systému do vhodného bodu skici.

- Po otevření programu Solidworks zvolíme z pruhu Nabídky → Soubor → Nový, v otevřeném dialogovém okně zvolíme → Díl → OK.

Tím se nám otevře pracovní prostor programu Solidworks s příslušnými panely nástrojů.

- V záložkách CommandManageru vybereme záložku Skica, v horní části CommandManageru se otevřou použitelné nástroje, ostatní nástroje jsou nevyvícené.

Zde vybereme kreslici nástroj Obdélník, PropertyManager nám nabídne vyberte roviny pro vytvoření skici pro entitu a na grafické ploše se nám objeví návrh rovin. Pomocí např. kurzorových šípek můžeme s těmito rovinami otáčet, tím uvidíme všechny tři základní roviny,
- vybereme →Přední rovina.
Kurzor myši se změnil na symbol tužky a pod ní je symbol kresleného objektu (obdélník).
- Umístíme kurzor do počátku souřadnicového systému (vybraný bod se zvýrazní a změní barvu/oranžová).
- Klepneme levým tlačítkem myši a potáhneme kurzor vlevo vzhůru, tím se nám nakreslí obdélník, při dalším klepnutím myši se kreslení ukončí, nemusíme bráct žádný ohled na zobrazující se rozměry kresleného objektu, protože přesné rozměry budeme nakreslenému objektu přidělovat pomocí Inteligentního kóтовání. Po nakreslení jakéhokoliv objektu musíme ukončit činnost kreslícího nástroje, to můžeme provést opětovným kliknutím na již vybraný kreslící nástroj, nebo z nabídkového pruhu ikonu Vybrat.
Po klepnutí myší na grafickou plochu nakreslený objekt změní barvu na modrou a v pravé části stavového řádku se objeví text Podurčený (to znamená, že nejsou určeny rozměry a poloha objektu objektu). U jednotlivých čar nakresleného objektu se objevily zelené plochy se symboly, po najetí myší se ukáže příslušná vazba (vodorovná,přímk 3),Pravý spodní bod obdélníku má vazbu sjednocenou,bod1 a počátek souřadnicového systému.
- Klepnutím myší otevřeme nástroj Inteligentní kóta, ukážeme na spodní hranu obdélníka, jeho barva se změní na žlutou a při klepnutím levého tlačítku se objeví kóta a kóтовací čára, nyní můžeme umístit co nejvýhodněji, potom znovu klepneme levým tlačítkem myši, objeví se dialogové okno Upravit, nyní můžeme zapsat požadovanou velikost, bez ohledu na skutečnou velikost skici. To samé provedeme pro vertikální hranu. Nyní máme obdélník zakótován, zrušíme nástroj inteligentní kóta, uložíme zakreslenou skicu jako, nazveme kreslený díl kostka.

6. lekce
ZÁSADY SKICOVÁNÍ SOLIDWORKS

Barvy skici
Barvy entit jsou definovány barevným schématem, to můžeme nastavovat pomocí příkazu
Možnosti z roletkové nabídky Nástroje, v příkazu Možnosti systému → vybereme možnosti →
Barvy.

Program Solidworks nabízí standardní nastavení barev:

- Modrá- nakreslená, ale podurčená entita, je nutno přidat vztahy.
- Zelená- vybraná entita, je možné přidávat vztahy.
- Černá- plně určená entita, její tvar a velikost jsou plně definovány, má vhodné vztahy.
- Červená- přeурčená entita,má více geometrických vztahů, než je možno použít,
 systém nás upozorní na stavovém řádku a vzniklý konflikt pomůže vyřešit.
- Žlutá- neplatná geometrie skici.
- Šedá- skica není aktivní, je ukončená a není vybraná.

Skicovací režimy

- **Klik –klik**: tento režim se používá při kreslení série entit. Po vybrání příslušné entity (např. obdélník) klepneme levým tlačítkem myši (začátek kreslení entity) a potáhneme myším kurzorem na konec myšlené entity a znovu klepneme levým tlačítkem, tím kreslení ukončíme. Pokud vytváříme řetězec kót (např. kreslení mnohoúhelníku pomocí přímky) každým klepnutím myši ukotvíme přímku do bodu a ukončí vytvářený řetězec můžeme uzavřením obrysu, nebo poklepáním levým tlačítkem myši.
- **Táhnout a pustit** je druhou možností, používáme ji nejčastěji při kreslení samostatných entit, při tomto způsobu držíme levé tlačítko myši stisknuté, kurzor potáhneme do nové polohy a tlačítko v nové poloze uvolníme. Při tomto způsobu nelze vytvářet řetěz entit a koncový bod jedné entity není počátečním bodem druhé entity.

Symbols kurzu

Při skicování se mění kurzory v závislosti na aktivním příkazu skici, který právě provádíme.
- Tužka- tento symbol signalizuje, že je aktivní kreslící nástroj, pod tužkou je nakreslen symbol kreslené entity (přímka, obdélník, kružnice,…). U symbolu skicované entity se zobrazuje její velikost i úhel, pomocné uchopovací čáry nás informují o momentálním vztahu entit (vodorovnost, vertikálnost, kolmost, sjednocení dvou bodů,…)
- Šipka pomocí ní vybíráme entity (přímka, obdélník, kružnice,…), vybráním nástroje Inteligentní kóta budeme definovat velikost označené entity, u kurzoru se zobrazí symbol kóty.

Zásady správného kreslení 2D skici
Pro vytvoření plně definované skici:
- nakreslení přibližné geometrie skici tak, aby tvar skici byl tvořen uzavřenými obrysy.
- Definování entit přidáním kót a geometrických vztahů.
- Skica musí umožňovat bezproblémovou tvorbu dílů tím, že nemá zdvojené entity.
- Entity by měly být vzájemně napojeny (koncové body sloučené).
- Entity skici ořezáváme jen v nezbytně nutných případech.
- Skica nesmí být přeuročená.

7. lekce
ENTITY A JEJICH VAZBY

Entity skici a definování vazeb
Přímka- V comandManageru vybereme levým tlačítkem myši příkaz Přímka, v nabídce se objeví možnost kreslení přímky nebo osy, současně se otevře v PropertyManageru panel vlastností.
→ Nakreslíme libovolně dlouhou v přední rovině mimo počátek souřadnicového systému.
→ Ukončíme výběr příkazu Přímka, příkmu označíme klepnutím levým tlačítkem myši na jeden z koncových bodů, podržení a tažením ji přesuneme do jiné polohy.
→ označenou přímku zkopírujeme do schránky pomocí příkazy CTRL+C a vložíme ji na jinou pozici příkazem CTRL+V.
→ délku čáry i úhel přímky můžeme zadat pomocí ikony Inteligentní kóta nebo v PropertyManageru v záložce Parametry.
→ polohu jednotlivých koncových bodů můžeme zadat pomocí souřadnic v záložce Dodatečné parametry.

Manipulace s entitami ve skici
Program SolidWorks umožňuje jednoduchým způsobem změnu velikosti nebo umístění entit do požadované polohy (platí to pro podurčené „modré“ entity).
- kurzorem uchopíme bod nebo entitu (klepnutím levým tlačítkem myši) a přesuneme jej tažením do požadované polohy.
- polohu kružnice měníme uchopením a přesunutím středu, velikost přesunutím čáry kružnice.
- obdélník měníme přesunutím hrany nebo koncového bodu.
- označené entity lze kopírovat pomocí schránky (CTRL+C, CTRL+V)”na požadovanou polohu nebo rovinu označenou kurzorem.
- přesouvat, otáčet a kopírovat entity také můžeme pomocí nástroje Přesunout entity v CommandManageru.
- označené entity a popisy lze rovněž kopírovat tažením se stisknutou klávesou Ctrl.

Přidávání geometrických vazeb skici
Entity, kterým chceme přidat vazbu musíme nejprve označit, tím se nám otevře PropertyManager a vněm se nám nabízejí vhodné vazby, kromě toho se otevře kontextový panel nástrojů.

Po vybrání požadované vazby v jednom z možných panelů bude vybrané vazba přidána a entity zaujmou vazbou danou polohu. Existující nová vazba bude v PropertyManageru automaticky zapsána k vybraným entitám do záložky Existující vazby. Pokud chceme stávající vazbu zrušit, označíme entitu s danou vazbou, v PropertyManageru v záložce Existující vazby vybereme danou vazbu a klávesou Delete ji vymažeme, tím přestane vazba existovat a entita se uvolní.

→ Soubor → Nový → Díl → OK → záložky CommandManageru Skica → Přímka

→ Nakreslíme dvě přímky, 1. vodorovnou a 2. šikmou.
→ Vybereme klepnutím myši jednu přímku a pomocí Ctrl + klepnutí myši i druhou přímku.

V PropertyManageru se v záložce Vybrané entity objeví zapsané přímka 1 přímka 2 a současně se objeví Kontextový panel, v záložce Přidat vazby nebo v kontextovém panelu vybereme kolmou vazbu (je načtena symbolem kolmosti), přímky se přesunou do kolmé pozice, první přímka přitom zůstane vodorovná, protože jsme nezrušili vazbu vodorovnosti.
8. lekce

SKICOVÁNÍ POMOCÍ PŘÍKAZŮ

Skicování pomocí příkazů

Zvolte → Soubor → Nový → záložka Skica → ikona přímka, nakreslíme dvě rovnoběžné vodorovné přímky, stejně dlouhé, hrot tužky nastavíme do pravého konce horní přímky a potáhneme přímku směrem doprava a klikneme na klávesu „A“, přímka se změní na oblouk a zavedeme jej do pravého konce dolní přímky, zde oblouk kliknutím ukončíme. Podobně to provedeme s opačnými konci přímek, ale tak, abychom nakreslili oblouk vydutý.

![Oblouk skicování pomocí příkazů](image)

Oblouk → Tímto příkazem vytváříme část kružnice, v nabídce si vybíráme z více možností:

- **středový oblouk** - tažením myší vytvoříme kružnici o potřebném průměru, kliknutím myší ji ukončíme a myší označíme velikost (délku) oblouku, uchopením koncového bodu můžeme libovolně s obloukem pohybovat měnit velikost.

- **Tečný oblouk** – myší klikneme na koncový bod nějaké entity (např. přímky) a tažením vytváříme tečný oblouk potřebného průměru, klepnutím jeho tvorbu ukončíme.

- **Oblou třemi body** – kliknutím určíme počátek oblouku a tažením myší určujeme druhý bod oblouku i jeho střed.
Kružnice → Z plovoucího příkazu Kružnice můžeme vybírat:

- **(středová) kružnice**- po vybrání této ikony klepneme myší na grafickou plochu, tím určíme její střed a tažením stanovíme její přibližnou velikost (přesnou velikost určujeme číselným zakótováním). Po ukončení kreslícího nástroje a označení kružnice můžeme ji chycením za střed přesouvat a chycením za obvod měníme velikost kružnice.

- **obvodová kružnice**- po vybrání této ikony klepneme myší na grafickou plochu, tím určíme jeden bod, přesuneme kurzor do druhého bodu, opět klepneme myší (tím určíme polohu druhého bodu a tažením myši stanovíme velikost kružnice (kružnice vždy prochází danými body).

Konstrukční geometrie

Tuto geometrii nepovažují prvky jako hranice geometrie, tímto příkazem měníme plnou čáru kterékoliv nakreslené a označené entity na čáru čerchovanou, tímto způsobem můžeme vytvářet osy, roztečné kružnice,… Tuto geometrii můžeme zadat dvěma způsoby:
Do skici obdélníka s obloukovými bočními hranami dokreslíme pomocí nástroje přímka osy obloukových hran a taktéž spojíme středy oblouků přímou, nakonec postupně označíme dané přímky a označíme je jako konstrukční geometrie, tím se plné čáry přemění na čerchované osy a my můžeme vysunutím vytvořit prostorové těleso, kótu vysunutí zvolíme 30 mm.

9. lekce

KONSTRUKČNÍ GEOMETRIE

Konstrukční geometrie

Tuto geometrii nepovažují prvky jako hranice geometrie, tímto příkazem měníme plnou čáru kterékoliv nakreslené a označené entity na čáru čerchovanou, tímto způsobem můžeme vytvářet osy, roztečné kružnice,...Tuto geometrii můžeme zadat dvěma způsoby:

- pomocí kontextového panelu, ten obsahuje tuto nabídku
Do skici obdélníka s obloukovými bočními hranami dokreslíme pomocí nástroje přímka osy obloukových hran a taktéž spojíme středy oblouků přímkou, nakonec postupně označíme dané přímky a označíme je jako konstrukční geometrie, tím se plné čáry přemění na čerchované osy a my můžeme vysunutím vytvořit prostorové těleso, kótu vysunutí zvolíme 30 mm.

Příklad:

Otevřeme → Nový dokument → Dil →OK →záložka Skica →ikona Kružnice, zvolíme přední rovinu a nakreslíme kružnici o přibližné velikosti průměru 50 mm a v Propertymanageru zvolíme Jako konstrukční, dále nakreslíme čtyři menší kružnice ve čtyřech základních polohách bez ohledu na jejich velikost. Vdalším kroku označíme všechny čtyři menší kružnice pomocí myšího kurzoru+ klávesy Ctrl. Potom v PropertyManageru v kolonce Přidat vazby zvolíme vazbu Stejná, tím budou mít všechny čtyři kružnice stejný rozměr. Nyní můžeme jednu kružnici pomocí inteligentní kótu zakótovat (zvolíme velikost 20 mm).
10. lekce
ZADÁVÁNÍ TOLERANCÍ, ROVNIC, STEJNÝCH HODNOT

Zadávání tolerancí - nakreslíme a zakótujeme požadovanou entitu (obdélník) a zakótujeme jej.

→ v PropertyManageru nastavíme v kolonce Kóta/hodnota v záložce Tolerance /přesnost

→ obousměrná hodnotu úchylek +0,02 a -0,01 a přesnost na dvě desetinná místa → OK,

Přidání rovnice
Pokud potřebujeme, aby se velikost entit měnila v určitém poměru, použijeme příkaz Přidat rovnici.

- Nakreslime požadovanou skicu (obdélník) a zakótujeme jej.
- Dvojklikem na požadovanou kótu vyvoláme nabídku upravit a v ní vybereme v roletce příkaz Přidat rovnici. Jiným způsobem můžeme přidávat nebo upravovat rovnice ve stromu FeatureManageru v kolonce ∑ Rovnice na kterou klikneme pravým tlačítkem
myši, poté vybereme danou kótu zvolíme Přidat rovnici. Zobrazí se dialogové okno, kde je již zapsána námi označená kót a blikající kurzor za rovnítkem vyzývá k zápisu matematického vztahu, kterým se bude řídit další označená kót, ta bude závislá na velikosti první kót.

- Nyní klepneme na druhou kót, ta se zapíše za rovnítko v dialogovém okně, připíšeme \(/ 2 \) →OK, to znamená, že rozměr (kót) 100 mm se bude měnit v poměru \(50/2=25 \) mm. Tímto způsobem můžeme provázat libovolný počet kót.

Tuto závislost si můžeme ověřit změnou kót 100mm na hodnotu např. 150 mmm, dojde ke změně kót 50mm→75mm

Zadávání stejných hodnot

Pokud potřebujeme zadávat stejné hodnoty různých entit a aby při změně kót u jedné entity se současně změnily automaticky i všechny ostatní označené entity (včetně rozměrů na výkresech), použijeme příkaz **Spojit hodnoty**, v lokální nabízce Upravit.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

- Nakreslíme obdélník 40x60 mm a po zadání rozměru 40mm vybereme z roletky nabídky **Spojit hodnotu** a do dialogového okna zapišeme hodnotu 40mm → **OK**. U zapsané kót se objeví znak propojení kótů ∞
- Dále nakreslíme další entity a při kótování vybereme z roletky nabídku spojit a do dialogového okna zapišeme hodnotu 40 mm. U takto označených kót potom můžeme provést změnu hodnoty spojené kót změnou jedné libovolné spojené kót, změna se dotkne i všech ostatních spojených kót. Tímto způsobem můžeme provážat libovolný počet kót.

![Diagrams](image)

Úhlová Inteligentní kóta- Pracovní postup:

- naskicujeme rovnoběžník s nekolými hranami pomocí příkazu v nástrojovém okně.
- Zvolíme příkaz Inteligentní kóta.
- Označíme dvě hrany, mezi kterými chceme vytvořit úhlovou kót, poloha kurzoru určuje umístění a možný úhel, který chceme zakótovat.
- Po vhodném umístění kót zadáme požadovanou hodnotu úhlu.

![Diagram](image)

Tímto způsobem můžeme kótovat vnější i vnitřní úhly mezi přímkami, pokud by skica byla přeuročena, bude nám to oznámeno, my ji můžeme označit jako řídicí kót (pokud ji tam skutečně potřebujeme, nebo ji zrušit).
11. lekce
KÓTOVÁNÍ SYMETRICKÉ ENTITY K OSE

Kóтовání entity vzhledem k ose
Když potřebujeme zakótovat skicu průměrem poloviny tvaru (budeme ji rotovat), postupujeme následovně:
- Po nakreslení skici zvolíme příkaz Inteligentní kóta.
- Entitu zakótujeme k nakreslené ose rotace, tj. úsečku z konstrukční geometrie, (klepneme myši na vnější bod obrysu a na osu rotace a přetáhneme kótu přes osu.
- Přidáme značku průměru z PropertyManageru a kótu vystředíme

![Inteligentní kóta – oblouk](image)

Naskicujeme obdélník a pomocí nástroje **Tečný oblouk** spojíme oba levé body, pravé body spojíme pomocí nástroje **Středový oblouk**, potom zvolíme nástroj **Inteligentní kóta**.
- Při výběru kótování oblouku po kliknutí na oblouk se automaticky kótuje rádius.
- Pokud vybereme oblouk a oba koncové body, budeme kótovat délku oblouku.
- Výběrem středového bodu a obou koncových zakótujeme úhel oblouku.
- Průměr zakótujeme, když vybereme pouze oba koncové body,
Vzdálenost oblouku – kótování

Nakreslíme dvě horizontální přímky vzdálené od sebe přibližně 30 mm, pravé konce propojíme jednou šikmou a druhou kolmou přímkou, levé konce spojíme pomocí Tečného oblouku.

- Přetažením koncového bodu ze středu na obvod oblouku.
- V PropertyManageru Kóta v možnostech Vodící křivky v záložce Oblouk zaškrtneme políčko Střed/Min/Max.
- Při kótování oblouku podržíme klávesu SHIFT

Vodorovná a svislá souřadnicová kóta

Nakreslíme skicu ve tvaru schodnicového bloku, složeného z pěti schodů, pomocí vodorovných a svislých přímek, na jednotlivých délách úseček nezáleží, budeme je upřesňovat pomocí kót.

- Z roletky Inteligentní kóta zvolíme vodorovná souřadnicová kóta.
- Myši označíme levou hranu skici jako základnu pro kótování (může to být přímka, osa nebo bod), od které se budou jednotlivé kóty automaticky zapisovat.
- Přetáhneme po označení základny kurzor do místa, kam se budou jednotlivé kóty zapisovat, tuto polohu označíme tlačítkem myši.
- Postupně budeme myší označovat jednotlivé entity, které chceme okótovat, jednotlivé kóty se budou na vybrané místo automaticky zapisovat, budou-li kóty příliš blízko sebe, odkazovací čáry se automaticky zalomí.
- Upravíme hodnoty kót na požadované rozměry.
- Příkaz Vodorovná souřadnicová kóty ukončíme stisknutím klávesy ESC.
- Pro okótování skici ve svislém směru zvolíme příkaz Svislá souřadnicová kóta.
- Označíme spodní hranu skici jako kótovací základnu.
- Opakujeme stejný postup jako u Vodorovná souřadnicová kóta

Pokud jsme vynechali některou z kót, můžeme ji doplnit, pravým tlačítkem myši klepneme na kteroukoliv souřadnicovou kótou, z lokální nabídky vybereme Přidat k souřadnicové kótě a nyní vybereme entitu, u které chybí kót a souřadnicová kótá se automaticky doplní na správné místo.
12. lekce
HROMADNÉ PŘIDÁVÁNÍ PARAMETRŮ A VZTAHŮ

Hromadné přidání parametrů a vztahů entitám skici
Kóty a vztahy můžeme vložit do skici, pokud v hlavní nabídce zvolíme → nástroje → Kóty → Plně určit skicu. Tento příkaz také najdeme v CommandManageru v nabídce nástroje Zobrazit → Odstranit vazby.

- Nakreslíme skicu dle předlohy a zvolíme příkaz → nástroje → Kóty → Plně určit skicu.

Všimněme si, že skica prochází počátkem souřadnicového systému, je to z toho důvodu, že i úplně zakótovaná skica by byla označena jako Podurčená, Solidworks by dodělal kóty k počátku souřadnic.

- Zvolíme v okně Entity k plnému určení volbu Všechny entity ve skice, v okně Vazby volbu Vybrat vše, v záložce Kóty zadáme Vodorovné kóty od základny a do okna pod touto volbou vložíme, od které chceme zapisovat vodorovné kóty.
- Nyní zadáme pro svislé kóty rovněž Od základny a do okna pod touto volbou vložíme Bod 1 Počátek jako základnu, od které chceme zapisovat svislé kóty.
Samostatná práce – příklad:

- V záložce Kóty zvolíme umístění kót Pod skicou a Nalevo od skici
- Nastavení příkazu Plně určit skicu potvrdíme klepnutím na tlačítko OK.
- Program SolidWorks zakótuje nakreslenou skicu, my musíme pouze upravit jednotlivé kóty.

Samostatná práce – příklad: viz obr. výše

Zaoblení a zkosení entit
V nabídce CommandManageru příkazu zaoblit se skrývají dvě možnosti
- Zaoblit entity – příkaz zaoblí roh v průsečíku dvou skicovaných entit a vytvoří k nim tečný oblouk
- Zkosit entity – příkaz zkosí roh (srazí hranu) v průsečíku dvou skicovaných entit

Ve skice se příkazy Zaoblit a Zkosit entity používají jen při skicování geometrie, která nepodléhá možným změnám tvarů, zaoblení a sražení hrán je lépe provádět až u 3D modelu.

Nakreslete pomocí nástroje obdélník o rozměrech 50x80mm

Manipulace s entitami ve skice

Program SolidWorks umožňuje jednoduchým způsobem změnu velikosti nebo umístění entit do požadované polohy (platí to pro podurčené „modré“ entity).
- kurzorem uchopíme bod nebo entitu (klepnutím levým tlačítkem myši) a přesuneme jej tažením do požadované polohy.
- polohu kružnice měníme uchopením a přesunutím středu, velikost přesunutím čáry kružnice.
- obdélník měníme přesunutím hrany nebo koncového bodu.
- označené entity lze kopírovat pomocí schránky (CTRL+C, CTRL+V) na požadovanou polohu nebo rovinu označenou kurzorem.
- přesouvat, otáčet a kopírovat entity také můžeme pomocí nástroje Přesunout entity v CommandManageru.
- označené entity a popisy lze rovněž kopírovat tažením se stisknutou klávesou Ctrl.
Drážka

V nabídce příkazu Drážka můžeme volit ze čtyř možností kreslení drážek:
- Rovná drážka
- Středová Rovná drážka třemi body
- Středová Oblouková drážka
- Oblouková drážka

→ Nakreslíme do nového souboru všech čtyř typů drážek, všimneme si odlišností při kreslení jednotlivých typů, také PropertyManager se mění dle typu drážky, šířku a souřadnice bodů můžeme zadávat i pomocí záložky Parametry v PropetyManageru.

13. lekce
KRESLENÍ A KÓTOVÁNÍ KŘIVEK

Elipsa a Parabola

V nabídce příkazu elipsa najdeme tři možnosti:
- elipsa
- segment elipsy
- parabola

Při vybrání nástroje elipsa nejprve klepneme myším kurzorem tam, kde chceme umístit střed elipsy, přetažením kurzoru kreslíme kružnici, nad kurzorem se objevují hodnoty R a r, to jsou délky hlavní a vedlejší poloosy, (současně nám čárkovaná úsečka naznačuje polohu hlavní poloosy budoucí elipsy), při dalším klepnutí nastavíme velikost hlavní poloosy a dalším tažením kurzoru nastavujeme velikost vedlejší poloosy. Změny velikosti můžeme samozřejmě provádět pomocí inteligentní kóty, kótujeme velikost hlavní a vedlejší poloosy.

Při kreslení segmentu elipsy prvním klepnutím vybereme střed elipsy, po přetažení určíme velikost hlavní poloosy druhým klepnutím, třetím klepnutím určíme velikosti vedlejší poloosy a současně začátek segmentu, konec segmentu stanovíme čtvrtým klepnutím myši.
Podobně postupujeme i při kreslení paraboly, tu musíme také dokončit tažením myši.

Zakótování provádíme pomocí Inteligentní kóty, kótujeme parametr p paraboly.

Drážka

V nabídce příkazu Drážka můžeme volit ze čtyř možností kreslení drážek:

- Rovná drážka
- Středová Rovná drážka třemi body
- Středová Oblouková drážka
- Oblouková drážka

→ Nakreslíme do nového souboru všech čtyř typů drážek, všimneme si odlišností při kreslení jednotlivých typů, také PropertyManager se mění dle typu drážky, šířku a souřadnice bodů můžeme zadávat i pomocí záložky Parametry v PropetyManageru.
Splajn, bod

- Příkazem **splajn** vytvoříme skicu pomocí např 5 bodů.
- Postupně všem bodům splajnu určíme polohu pomocí souřadnic X a Y v záložce PropertyManageru Parametry:
 - 1. bod 0;0
 - 2. bod 15;15
 - 3. bod 30;0
 - 4. bod 45;‐15
 - 5. bod 60;0

U označeného splajnu se v jeho bodech zobrazí ovladače splajnu, pomocí kterých můžeme určovat polohu bodů splajnu, prodlužovat i zkracovat napětí a směr splajnu. Dále můžeme splajn nastavit jako konstrukční nebo zobrazit jeho křivost v záložce **Možnosti** v PropertyManageru. Pokud označíme splajn pravým tlačítkem myši, zobrazí se lokální nabídka, v ní můžeme přidat např kontrolu tečnosti, křivosti, vložit další bod, ale i další možnosti zobrazení. Stejnou nabídku vyvoláme příkazem **Nástroje → Splajny**.

- Označte splajn po stisknutí pravého tlačítka myši vyberte **Zjednodušit splajn**.
- Objeví se dialogové okno a v něm klepejme na záložku **Hladký** tak dlouho, až bude splajn definován pouze dvěma body. Potvrďte klepnutím na **OK**.
 V dialogovém okně potvrďte zrušením některých ovladačů splajnu klepnutím na **Ano**.
Nyní můžeme tvarovat splajn jednak uchopením za křivku (měníme tvar křivky, poloha tečných přímek se nemění), nebo uchopením za koncový bod tečny (měníme polohu tečných přímek a tím i křivky).

14. lekce

DEFINOVÁNÍ VAZEB SKICI

Nástroje skici a definování vazeb

Nakreslené tvary můžeme dále upravovat příkazy z nabídky nástrojů. Entity lze ořezávat, prodlužovat, zrcadlit, odsazovat, posouvat a otáčet. Můžeme je také kopírovat lineárním nebo kruhovým polem.

Oříznutí entit

- Nakreslíme skicu podle obrázku, na rozměrech nezáleží.
- V CommandManageru zvolíme možnost Oříznout Entity, v PropertyManageru máme 4 možnosti ořezávání entit, Pokročilé Roh, Oříznout uvnitř, oříznout vně a oříznout k
nejbližší. Postupně si vyzkoušíme všechny 5 možností, grafické provedení ikon je praktickým návodem k výběru oříznutí entit, praktický postup práce je popsán po výběru konkrétního typu oříznutí v záložce Vzkaz, vracet se do původního stavu budeme pomocí tlačítka Zpět.
Prodloužení entit

Chceme-li prodloužit entitu k nejblíže položené entitě, máme možnost použít příkaz prodloužit entitu v roletce **Oříznout entitu**.

Na prodlužovanou entitu ukážeme kurzorem a klepneme levým tlačítkem myši a entita bude prodloužena.
Zrcadlení entit

Pro vytvoření symetrické skicy můžeme použít nástroje **Zrcadlit entity** nebo **Dynamické zrcadlo**, které najdeme v hlavní nabídce **Nástroje → Nástroje pro skici → Dynamické zrcadlo**.

- Nakreslíme skicu dle obrázku, dvě rovnoběžné přímky, horní body spojíme tečným obloukem, spodním bodem vedeme vodorovnou osu a druhou přímku prodloužíme až k ose (pomocí prodloužení entity).

- V dalším kroku vybereme všechny entity tažením myši (držíme stisknuté levé tlačítko myši)

- Zvolíme nástroj **Zrcadlit entity** v **CommandManageru** a automaticky se vytvoří náhled uzavřené souměrné skicy podle nakreslené osy.

- Náhled potvrdíme tlačítkem **OK**.
Odsazení entit

Pomocí tohoto příkazu můžeme přidat další entity do skicy k entitám (plochám i hranám modelu), které jsme označili. Přidané entity budou odsazeny o vzdálenost, tu zadáváme v **PropertyManageru**. Entity můžeme odsazovat vně, dovnitř i obousměrně.

- Nakreslíme skicu dle prvního obrázku
- Vybereme kteroukoliv z nakreslených entit
- Zvolíme příkaz **Odsadit entit**y, entity se automaticky odsadí od označené entity a zobrazí se náhled odsazení.
- V záložce **PropertyManageru** Odsadit entity zadejte v záložce **Parametry** vzdálenost odsazení entit 5 mm. Nastavíme volby **obousměrně**, **Vybrat navazující**, **Převést na konstrukční**, **Uzavřít konce**, zvolíme možnost **Oblouky**. Náhled zobrazí budoucí tvar odsazených entit. Správně nastavené

Hodnoty potvrdíme zeleným zatržítkem nebo stiskem klávesy Enter a odsazení bude dokončeno.
15. lekce
LINEÁRNÍ POLE SKICI

Lineární pole skici
V nabídce příkazu Lineární pole skici je také Kruhové pole skici, oba nástroje kopírují naskicované entity, lineární pole ve směru vybraných os a Kruhové pole okolo zvoleného bodu.
Mnohoúhelník

Mnohoúhelník můžeme vytvořit pomocí příkazu v CommandManageru, počet stran mnohoúhelníku zadáme v záložce PropertyManager → Parametry, stejně tak zadáme velikost, směr do osy X nebo Y určujeme při skicování.

- Náhled potvrdíme tlačítkem OK.

Dynamické zrcadlo

- Nakreslíme osu a vybereme ji a potom zvolíme Příkaz Dynamické zrcadlo z nabídky Nástroje.
- Na ose se zobrazí dvojité vodorovné přeškrtnutí, tzn. Příkaz je aktivní, nakreslíme skicu dle obrázku. Pokud jde kreslená entita přes osu dynamického zrcadlení a došlo by zrcadlením ke zdvojení entit (viz kreslený rádius), SolidWorks nás upozorní. Klepneme na tlačítko OK a můžeme pokračovat.
- Ukončíme příkaz opětovným klepnutím na Dynamické zrcadlo.
Přesunutí entit

V nabídce příkazu Přesunutí entit v CommandManageru najdeme možnosti: přesouvat, kopírovat, otáčet, zmenšovat i zvětšovat pomocí měřítka. Postup je vždy stejný, nejdříve entitu označíme a potom volbou vhodného příkazu oznámíme, co budeme s entitou dělat.

Bloky skiců

Integrovaná střední škola polygrafická, Brno, Šmahova 110
Pokud bychom řešili schematický pohyb mechanismů, docílíme to nejlépe pomocí 2D bloků a jejich vzájemným zavazbením.

Nakreslíme schématicky řetězový převod, pro jednotlivá řetězová kola využijeme kopírování a následnou změnu rozměrů.

- Vytvoříme následující skicu, tvořenou ze čtyř kružnic, dvě budou soustředné, všechny budou „jako konstrukční“. Tyto kružnice představují tři ozubená řetězová kola

- Postupně je označíme a v kontextovém panelu nástrojů vybereme Vytvořit blok (to samé můžeme vytvořit v hlavní nabídce Nástroje → Bloky → Vytvořit). Každý blok elementu musíme potvrdit klepnutím na zelené zatržítko v PropertyManageru, bloky se zapíší do stromu FeatureManageru.

- Nyní vybereme první dvě řetězová kola (průměry roztečných kružnic), které chceme spojit řetězem a v hlavní nabídce zadáme → Nástroje → Entity skicy → Řemen/Řetěz.

- V grafické ploše se objeví náhled vložené nabídky, v PropertyManageru zkontrolujeme zadané parametry a potvrdíme je.

- To stejné provedeme i pro druhou dvojici soustředných kružnic.

Výsledkem je potom dvojnásobný řetězový převod, řetězová kola máme pouze schematicky znázorněna, stejným způsobem bychom postupovali i při kreslení řemenového převodu, navíc bychom měli k dispozici i volbu způsobu opásání.
16. lekce

CHYBY PŘI SKICOVÁNÍ A JEJICH ŘEŠENÍ

Nejčastější chyby při skicování

Není-li skica správně nakreslena (koncové body entit mají mezi sebou mezeru, přímky jsou přetažené, dvě entity leží na sobě - to jsou nejčastější chyby začátečníků), nelze z takové skici vytvořit automaticky prvek, náhled se nezobrazí a solidWorks nás upozorní na chyby. Bude-li skica obsahovat jednoduché chyby, SolidWorks nabídne Opravit skicu. Pokud si nejsme jisti správností skici nebo pokud skica obsahuje více chyb, zvolíme Příkaz Zkontrolovat skicu pro prvek – ten zobrazí kolizní místa a my je můžeme opravit ručně.

CHYBY VE SKICE A JEJICH ŘEŠENÍ

Přeурčená skica

Přidáme-li při kótování kótu, která je nadbytečná (přeурčuje definici geometrie), otevře se dialogové okno a zobrazí se všechny vazby i kóty, u kterých vzniká konfliktní stav.
Tento stav můžeme řešit třemi způsoby, které nám **SolidWorks** nabízí:

- **Tuto kótu nastavit jako řízenou**, potom kóta nedefinuje rozměr, ale pouze jej odměřuje, je pouze informativní.

- **Tuto kótu nastavit jako řízenou**, kóta nadále definuje rozměr, ale vzniká konfliktní stav, skica je přeурčená.

- **Storno**, kóta se nevytvoří.

Konfliktní stav může vzniknout i přidáním kóty nebo geometrické vazby k již určené geometrii entit. **SolidWorks** nám v případě konfliktního stavu nabízí pomocnou ruku, ve stavovém řádku klepneme levým tlačítkem myši na červeně označený Přeурčený a v **PropertyManageru** se zobrazí **SketchXpert**. V okně **Zpráva** máme dvě možnosti:

- **Diagnóza**, zvolíme-li tuto možnost, systém vypočítá a ukáže všechna možná řešení konfliktního stavu a pomocí šipek je zobrazí ve skice.

- **Ruční oprava**, zvolíme-li tuto možnost, systém zobrazí všechny problémové vazby a kóty v jednom okně, kolizní vztah můžeme určit, označit a smazat stiskem klávesy DELETE.
Neřešitelná skica

Přidáme-li která má již definované vazby, nadbytečnou nebo nevhodnou vazbu, vazba se zobrazí v PrpertyManageru s červeným výstražným polem. Stavový řádek nás také upozorní zápisem Nenalezeno žádné řešení na kolizní situaci, situaci můžeme jednoduše vyřešit označením a vymazáním výstražného pole klávesou DELETE. Tím jsme nevhodnou vazbu zrušili a můžeme pokračovat v práci.

Další způsob, jak zobrazit takové vazby, je pomocí příkazu Zobrazit/odstranit vazby v CommandManageru, ve kterých můžeme vyfiltrovat existující vazby ve skice dle různých kritérií.
V okně předefinující/nevypořádáno se zobrazí dané vazby, budou mít stejnou barvu ve skice na grafické ploše i v PropertyManageru. Po označení ji můžeme vymazat.

17. lekce
3D SKICA, ZÁSADY SPRÁVNÉHO KRESLENÍ

3D skica- zásady správného kreslení
Pro kreslené ve 3D skice (v prostoru) je velmi důležitá orientace v rovinách (Přední, Horní, Pravá) a v hlavním souřadnicovém systému X,Y, Z, který je zobrazen v levém spodním rohu grafického okna.

1. Zvolíme příkaz Nový dokument → Díl →OK.
2. V CommandManageru zvolíme příkaz Načrtout 3D skicu.
3. Pro lepší orientaci v prostoru zvolíme z panelu **Zobrazení izometrický pohled**.

![Diagram zuševedení 3D modelu]

Rám stolu nakreslíme příkazem obdélník se středem v počátku, obdélník bude automaticky nakreslen vzhledem k rovině souřadného systému, pro změnu orientace kreslící roviny použijeme tabulátory.

4. Levým tlačítkem myši označíme kratší stranu stolu, zapíšeme hodnotu 600 mm a pomocí **PropertyManageru** nebo kontextového panelu přidáme vazbu **Podél osy Z**.

5. Druhá strana stolu bude mít délku 800 mm a přidělíme ji vazbu **Podél osy X**.

6. Rám stolu okótujeme 800x600

7. Protože velikost skici bude pravděpodobně přesahovat grafickou plochu, zmenšíme kreslící měřítko buď pomocí ikony Zoom na všechno, nebo kolečkem myši

8. Příkazem přímka z **CommandManageru** nakreslíme jednu nohu stolu, zadáme její výšku 800 mm a přidáme vazbu podél osy **Y**, k ostatním nakresleným nohám přidáme vazbu Stejný

9. Příkazem přímka z **CommandManageru** nakreslíme dvě vzpěry ve výšce 250 mm od spodního konce noh s vazbou Podél osy **Z**.

Filosofie tvorby 3D dílu

Integrovaná střední škola polygrafická, Brno, Šmahova 110
Práce v programu SolidWorks začínáme 2D nebo 3D skicou, v obou případech je skica základem 3D dílu. U 2D skici otevřeme první skicu v jedné ze základních rovin, kterým potom odpovídají základní pohledy ve výkresu: NÁRYS - pohled zepředu, BOKORYS - pohled z levé strany, v evropském zobrazení se umísťuje napravo od nárysu, PŮDORYS - pohled zhora, evropském zobrazení se umísťuje pod nárys.

Evropské umístění pohledů:

Americké umístění pohledů:

Vytvoření dílu
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Po otevření souboru z hlavní nabídky → Nový → vybereme Díl → OK, v CommandManageru zvolíme → Načrtnout skicu.

Na grafické ploše vybereme Přední rovinu, bude to rovina nárysu.

Pomocí nástrojů z panelu nástrojů Skica vytvoříme plně určenou skicu

Nyní vytvoříme 3D díl pomocí jednoho ze základních nástrojů z panelu Prvky:

- Přidat vysunutím
- Přidat rotací
- Přidat tažením po křivce
- Přidat spojením profilů
18. lekce
TVORBA DÍLU Z 2D SKICI

Tvorba dílu z 2D skici

Po otevření souboru z hlavní nabídky → Nový → vybereme Díl → OK,
v CommandManageru zvolíme → Načrtnout skicu.
Na grafické ploše vybereme Přední rovinu, bude to rovina nárysu.
Pomoci nástrojů z panelu nástrojů Skica vytvoříme plně určenou skicu

Nyní vytvoříme 3D díl pomocí jednoho ze základních nástrojů z panelu Prvky:
- Přidat vysunutím
- Přidat rotací
- Přidat tažením po křivce
- Přidat spojením profilů

Přidat vysunutím
Po vybrání tohoto nástroje zadáme v PropertyManageru délku vysunutí, 40 mm.
Tím jsme vytvořili díl vysunutím ve směru č. 1, směr vysunutí je možno změnit klepnutím na červenočernou dvojšipku v položce Směr č.1.

Další možnosti, jak zadat vysunutí, je vybrat z roletové nabídky v dialogovém okně Směr č.1 možnost Symetricky, díl se potom vytvoří symetricky k přední rovině, vždy 20 mm na každou stranu.

klepnutím

Úkosové vysunutí

Úkosové vysunutí vytvoříme takto:

Po nakreslení skici v Přední rovině vybereme v PropertyManageru

- **Přidat vysunutím**, zadáme délku vysunutí (40 mm).
- v dolní části okna Směr č.1 vybereme ikonu Zapnout/Vypnout úkos.
- K dispozici máme volbu Úkos vně, pomocí které můžeme změnit směr úkosu.
- V každém směru (směr č.1 i 2) můžeme vytvořit samostatné prosté nebo úkosové vysunutí.

Tvorba tenkostěnného dělu

Pro vytvoření tenkostěnného dílu použijeme původní skicu, použijeme pro návrat nástroj Zpět.

- V záložce Prvek vybereme Přidat vysunutím, délku vysunutí nastavíme ve směru č.1 na 40 mm, naslepo.

- V PropertyManageru zapneme volbu Tenkostěnný prvek.
- Z nabídky směru vysunutí můžeme vybírat **Jednosměrně, Symetricky nebo Dvouosměrně**, zadáme možnost **Jednosměrně**, tloušťku nastavíme na 6 mm a pomocí dvojšípky zvolíme směr vysunutí tlouštky stěny.

- Při zadání možnosti Symetricky se vytvoří tenkostěnný dél o tloušťce 6 mm, která bude symetricky rozdělena do obou směrů skici, tedy vždy 3mm na každou stranu.

- Při zadání možnosti Dvouosměrně můžeme zadávat tlouštky do jednotlivých směrů jednotlivě, například 5 mm a 1 mm.

- Další možností Uzavřít konce, musíme zadat tlouštku uzavíracích stěn (3 mm). Zímto způsobem vytvoříme uzavřenou tenkostěnnou krabici o různých tlouštkách stěn.
19. lekce

TVORBA DÍLŮ PŘIDÁNÍM ROTACÍ

Přidání rotací

Nástroj Přidání rotací znamená vytvoření dílu rotací kolem naskicované osy nebo již existující hrany se zadáním velikosti úhlu rotace. V PropertyManageru tohoto nástroje budeme zadávat osu rotace, směr rotace a velikost úhlu rotace.

Tvorba rotačního dílu:
- Vytvoříme skicu dle obrázku (pokud ji máme uloženou z minulých hodin, můžeme ji pouze otevřít).
- Skicu doplníme vertikální osou (konstrukční přímkou), vzdálenou 35 mm od levé vertikální hrany.
- Vybereme záložku Prvky a vCommandManageru zadáme nástroj Přidání rotací.
- V PropertyManageru označíme v položce Parametry rotace osu rotace, úhel rotace (270°).
- Do položky Vybrané obrysy vybereme klepnutím myši obrys nakreslené skici, směr rotace můžeme měnit tlačítkem s dvojšipkou

Směr rotace můžeme volit z nabídky:
- **Jednosměrně**- zadaný úhel se načítá v jednom směru, směr měníme dvojšipkou
- **Symetricky**- zadaný úhel rotace rozdělí symetricky do obou směrů od roviny skici
- **Dvousměrně**- Do jednotlivých směrů rotace zadáváme úhly jednotlivě, zvlášť rozměr A1 a zvlášť A2.

- **ÚPRAVA DÍLU**

3D díl můžeme upravovat pomocí dalších nástrojů z panelu nástrojů Prvky, např. Zaoblit, Zkosit, Odebrat vysunutím, Skořepina atd.

Nástroj Zaoblit
Označíme hranu k zaoblení a klepneme na příslušný nástroj Zaoblit, potom musíme ještě zadat v PropertyManageru Typ zaoblení (Konstantní poloměr, Proměnný poloměr, Mezi plochami, Tečné zaoblení), Položky k zaoblení (poloměr zaoblení, hrana k zaoblení, náhled zaoblení).

Nástroj Zkosit

Označíme hranu ke zkosení (spodní vnitřní hrana dílu) a klepneme na příslušný nástroj Zkosit, potom musíme ještě zadat v PropertyManageru Parametry, hranu zkosení úhel - délka s možností obrátit směr nebo délka-délka, velikost zkosení a jeho úhel nebo druhou délku, Položky k zaoblení, náhled zkosení.
Úprava dílu nástrojem Odebrat vysunutím

Nejprve si otočíme skicu pohled zezadu, přepneme do záložky Skica, nyní narýsujeme konstrukční kružnici o průměru 170 mm, zakótujeme ji, dále narýsujeme spodní kružnici na vertikále ze středu dílu a dvě kružnice na společné horizontální přímce, spodní kružnici zakótujeme průměrem 30 mm, označíme všechny tři kružnice a přidáme v položce Vlastnosti vazbu Stejná.

Nyní klepneme na záložku Prvky a v ní na nástroj Odebrání vysunutím, z roletové nabídky v položce Směr č. 1 vybereme Skrz vše.
20. lekce

TVORBA 3D DÍLU, JEHO ÚPRAVA

Tvorbá dílu nástrojem Rychlé 3D

V panelu prvky je nástroj Rychlé3D. Tento nástroj umožňuje při zapnutí vytvářet z 2D skici dynamicky 3D tělesa.

- naskicujeme v přední rovině obdélník o rozměrech 60 mm x 40 mm a skicu zavřeme.
- Zapneme nástroj Rychlé 3D.
Označíme jednu entitu skici, například horní stranu obdélníka, objeví se šipka, pomocí níž můžeme tažením vytvářet těleso vysunutím v kladném, nebo záporném směru. Pokud se samovolně skica nenatočí, místo šipky uvidíme pouze zelenou tečku, my musíme sami přepnout do izometrického zobrazení.

- Klikneme na kótu vysunutí (je zapsána modře), zapíšeme hodnotu 40 mm a vytáhneme ji mimo skicu.
- Na opřední stěně kvádru nakreslíme kružnici, zakótujeme ji průměrem 20 mm, 20 mm od spodního okraje a 30 mm od levého kraje kvádru.
- Ukončíme skicu jejím zavřením.
- Při zapnutém nástroji Rychlé 3D označíme oblouk nakreslené kružnice, opět se objeví zelená šipka a pomocí ní vytvoříme buď přidáním válcový výstupek nebo odebráním válcové zahloubení.
- Klikneme na kótu zahloubení (je zapsána modře), zapíšeme hodnotu 6 mm a vytáhneme ji mimo skicu.
Úprava dílu nástrojem Skořepina

Tímto způsobem můžeme převést ji dokončený díl na tenkostěnný výrobek, který se nazývá skořepina.

- Označíme na dílu čelní plochy (musíme je pomocí tlačítka Ctrl označit obě dvě).
- V CommandManageru klikneme na nástroj Skořepina a v PropertyManageru zadáme tloušťku skořepiny např. 6 mm
Tvorba dílu pomocí jedné skici s více uzavřenými profily

Další možností, jak ze skici vytvořit 3D těleso, je vytvořit skicu z více uzavřených profilů, které následně použijeme pro tvorbu 3D dílu pomocí různých 3D prvků, například Přidání vysunutím nebo Odebrání vysunutím.

- Vytvoříme následující skicu v Přední rovině a zakótujeme ji dle obrázku.
- Po uzavření skici vybereme záložku Prvky a v ní otevřeme nástroj Přidání vysunutím. Klepneme myší na obrysovou hranu a pokud nám SolidWorks nabídne vysunutí celého obdélníka, vymažeme v Property Manageru v okně Vybrané obrysy zápis skica1 obrys<1> a klepnutí myší na vybranou plochu se vloží skica 1 oblast<1>. Do okna směr necháme Naslepo a přepíšeme kótu na 50 mm.
- Po odsouhlasení Vysunutí klepnutím na zelené zatržítko musíme ve Stromu **FeatureManageru** rozbalit **Přidat vysunutím** 1 a kliknout na **skica 1**.

- V dalším kroku opět zvolíme nástroj **Přidat vysunutím** a v**PropertyManageru** nastavíme délku vysunutí na 26 mm a vysunutí odsouhlasíme zeleným zatržítkem.

Tímto způsobem jsme vytvořili 3D díl ze skici s více uzavřenými profily typu trojúhelník, obdélník a kružnice, do takto vytvořeného dílu můžeme dokreslovat a pomocí nástrojů **Přidat/Odebrat vysunutím** tvarovat díl.
REFERENČNÍ GEOMETRIE

Panel nástrojů Referenční geometrie umožňuje tvorbu rovin os, souřadných systémů bodů a odkazů na vazby (v sestavě).

ROVNOBĚŽNÁ ROVINA
Roviny můžeme vytvářet a použít v souborech dílů nebo sestav a použít je k vytváření skici, pohledového řezu modelu, jako neutrální rovinu v prvku úkosu atd.
Po vytvoření rovnoběžné roviny třeba označit jednu ze základních rovin (Přední, Horní, Pravá), plochu dílu nebo jinou již vytvořenou rovinu a v PropertyManageru příkazu Rovina zadat vzdálenost, případně změnit směr.

Vytvoření roviny rovnoběžné s přední rovinou
Vytvoříme rovnoběžnou rovinu s přední rovinou ve vzdálenosti 50 mm od ní následovně:

- Otevřeme soubor → Nový → Díl → OK.
- Označíme ve Stromu historie **Přední rovinu**.
- Zadáme příkaz **Rovina** z panelu nástrojů Referenční geometrie.
Vytvoření roviny rovnoběžné s plochou 3D dílu
Chceme-li vytvořit rovinu rovnoběžnou s plochou 3D dílu ve vzdálenosti 50 mm, budeme postupovat následovně:
- Otevřeme soubor → Nový → Díl → OK.
- Označíme přední plochu předem vytvořeného 3D dílu.
- Zadáme příkaz Rovina a zapíšeme vzdálenost 50 mm.

Vytvoření roviny skloněné pod úhlem od horní roviny

Přidanou rovinu můžeme také vytvořit pod určitým úhlem k některé ze základních rovin nebo k předem vytvořené a označené rovině či k plochám na 3D modelu. Mimo tyto roviny budeme v PropertyManageru příkazu Rovina potřebovat přímku naskicovanou v příslušné rovině nebo hranu na 3D modelu, kterou bude nová rovina procházet; samozřejmě je nutno zvolit také možnost Pod úhlem.
- Otevřeme soubor → Nový → Díl → OK.
- Označíme ve Stromu FeatureManageru Horní rovinu a v ní nakreslíme svislou přímku, skicu zavřeme.
- Ve Stromu FeatureManageru označíme jak Horní rovinu, tak skicu přímky (použijeme vícnásobný výběr pomocí klávesy CTRL).
- Zadáme příkaz Rovina, v PropertyManageru, označíme vertikální přímku, zvolíme možnost Pod úhlem a zde zapíšeme úhel 30°.

- Chceme-li vytvořit přímku v opačném směru, klepneme na tlačítko Opačný směr.

Vytvoření roviny pod úhlem od plochy 3D dílu

Pokud chceme vytvořit rovinu pod úhlem 30° od plochy 3D dílu postupujeme následovně:
- Otevřeme soubor → Nový → Díl → OK
- Nakreslíme v přední rovině obdélník, přepneme do záložky Prvky a pomocí nástroje Přidat vysunutím
vytvoříme kvádr, nemusíme jej kótovat.

- Označíme přední rovinu kvádru, přepneme do záložky Skica a nakreslíme mnohoúhelník (jeho osa bude vertikální), přepneme do záložky Prvky a vysunutím vytvoříme následující 3D díl.

- Označíme přední stěnu již vytvořeného 3D dílu a více násobným výběrem (se stisknutou klávesou CTRL) vybereme ještě svislou hranu na 3D dílu.

- Chceme-li změnit směr roviny, zatrhneme tlačítko Převrátit.

- Pokud budeme chtít vytvořit rovinu s jinou průsečnicí, nakreslíme na přední stěně 3D dílu např. svislou přímku, ta bude novou průsečnicí s přední stěnou 3D dílu, pomocí tlačítka Převrátit můžeme změnit směr otočení roviny.
22. lekce

TVORBA ROVIN POMOCÍ PARAMETRŮ

Vytvoření roviny kolmé k ploše

Rovinu můžeme vytvářet tečně i k nerovinnému povrchu, např. k válcové ploše.

Posyp tvorby:

- Vytvoříme skicu hranolu s válcovým výstupkem na horní ploše.
- Na horní ploše válcové části 3D dílu naskicujeme bod, který bude ve středu kruhové podstavy.
- Tímto bodem povedeme rovinu rovnoběžnou s pravou rovinou (rovina 2)
- Označíme tuto rovinu a pomocí Referenční geometrie zadáme příkaz Rovina
- Kliknutím myší označíme válcovou plochu výstupku a tím se vytvoří rovina 3 kolmá k rovině 2 i k Pravé rovině a je tečná k povrchu válcového výstupku. Ve druhém odkazu je zatržena ikona Tečný.
Volbou v okně První odkaz Pod úhlém můžeme měnit úhel mezi rovinami 2 a 3.

Vytvoření roviny rovnoběžné s plochou 3D dílu
Chceme-li vytvořit rovinu rovnoběžnou s plochou 3D dílu ve vzdálenosti 50 mm, budeme postupovat následovně:
- Otevřeme soubor → Nový → Díl → OK.
- Označíme přední plochu předem vytvořeného 3D dílu.
- Zadáme příkaz Rovina a zapíšeme vzdálenost 50 mm.
Rovina určená body a přímkami

Pro určení roviny stačí 3 body, to mohou být např. tři vrcholy 3D dílu nebo tři body naskicované pomocí 3D skici apod.

- Použijeme skicu libovolného kvádru, skicu ukončíme.
- Zadáme v **CommandManageru** příkaz **Rovina**.
- V tomto příkazu postupně myší klikneme na 3 vrcholy 3D skici

- Jinou možnost máme při narýsování tří libovolných bodů na 3D skice nebo narýsujeme přímku a bod, který po zadání příkazu Rovina označíme kliknutím.
Při rýsování tří různých bodů nám nejdříve SolidWorks nabídne volbu roviny, ve které budeme dva body nebo přímku rýsovat, potom musíme skicu ukončit a zvolit znovu vytvořit skicu, teprve potom můžeme narýsovat třetí bod v jiné rovině.

Provedeme šikmý řez válcem:

- Narýsujeme skicu válce o průměru
23. lekce
TVORBA OS A ROVIN POD ÚHLEM

Rovina kolmá ke křivce

Vytvoření roviny pod úhlem od plochy 3D dílu

Pokud chceme vytvořit rovinu pod úhlem 30° od plochy 3D dílu postupujeme následovně:

- Otevřeme soubor → Nový → Díl → OK
- Nakreslíme v přední rovině obdélník, přepneme do záložky Prvky a pomocí nástroje Přidat vysunutím vytvoříme kvádr, nemusíme jej kótovat.
- Označíme přední rovinu kvádru, přepneme do záložky Skica a nakreslíme mnohoúhelník (jeho osa bude vertikální), přepneme do záložky Prvky a vysunutím vytvoříme následující 3D díl.

- Označíme přední stěnu již vytvořeného 3D dílu a více násobným výběrem (se stisknutou klávesou CTRL) vybereme ještě svislou hranu na 3D dílu.
- Chceme-li změnit směr roviny, zatrhneme tlačítko **Převrátit**.
Pokud budeme chtít vytvořit rovinu s jinou průsečnicí, nakreslíme na přední stěně 3D dílu např. svislou přímku, ta bude novou průsečnicí s přední stěnou 3D dílu, pomocí tlačítka Převrátit můžeme změnit směr otočení roviny.

Vytvoření roviny kolmé k ploše

Rovinu můžeme vytvářet tečně i k nerovinnému povrchu, například k válcové ploše.

Posyp tvorby:
- Vytvoříme skicu hranolu s válcovým výstupkem na horní ploše.
- Na horní ploše válcové části 3D dílu naskicujeme bod, který bude ve středu kruhové podstavy.
- Tímto bodem povedeme rovinu rovnoběžnou s pravou rovinou (rovina 2)
- Označíme tuto rovinu a pomocí Referenční geometrie zadáme příkaz **Rovina**
- Kliknutím myši označíme válcovou plochu výstupku a tím se vytvoří **rovina 3** kolmá k **rovině 2** i k **Pravé rovině** a je tečná k povrchu válcového výstupku. Ve druhém odkazu je zatržena ikona **Tečný**.

- Volbou v okně První odkaz Pod úhlem můžeme měnit úhel mezi rovinami 2 a3

Rovina určená body a přímkami

Pro určení roviny stačí 3 body, to mohou být např. tři vrcholy 3D dílu nebo tři body naskicované pomocí 3D skici apod.
- Použijeme skicu libovolného kvádru, skicu ukončíme.

- Zadáme v **CommandManageru** příkaz **Rovina**.

- V tomto příkazu postupně myší klikneme na 3 vrcholy 3D skici

- Jinou možnost máme při narýsování tří libovolných bodů na 3D skice nebo narýsujeme přímku a bod, který po zadání příkazu Rovina označíme kliknutím.

- Při rýsování tří různých bodů nám nejdříve SolidWorks nabídne volbu roviny, ve které budeme dva body nebo přímku rýsovat, potom musíme skicu ukončit a zvolit znovu vytvořit skicu, teprve potom můžeme narýsovat třetí bod v jiné rovině. Provedeme šikmý řez válcem:
24. lekce

ROVINA KE KŘIVCE, MODELOVÁNÍ DÍLU

ROVINA KOLMÁ KE KŘIVCE
Další možností tvorby roviny, respektive jejího zachycení, je její vytvoření k již naskenované křivce pomocí nástroje Rovina v PropertyManageru.

Vytvoření roviny kolmé ke šroubovicí

Rovinu kolmou ke šroubovicí vytvoříme následujícím způsobem:
- vytvoříme následující skicu, která obsahuje válcovou plochu.
- Na horní podstavě válcové části dílu otevřeme skicu, označíme tuto plochu a zadáme příkaz Převést entity. Tím máme naskicovanou kružnicí odpovídající průměru podstavy válcového výstupku, skicu zavřeme.
 Vybereme naskicovanou kružnicí a zadáme příkaz Šroubovice/spirála z panelu nástrojů Křivky.
- Zadáme příslušné parametry šroubovice, např. stoupání 20 mm, počet otáček 1.
- Po odsouhlasení parametrů šroubovice zadáme z nástroje Referenční geometrie příkaz Bod, zadáme příslušné parametry a odsouhlasíme je.

- Z nástroje Referenční geometrie zadáme příkaz Rovina, v ní zvolíme možnost Kolmá ke křivce, označíme bod na ní a vlastní
- Zatrhneme-li v PropertyManageru možnost Zadat počátek na křivce, bude rovina vždy procházet koncovým bodem křivky.

Vytvoření osy

Referenční osu vytvoříme z panelu **Referenční geometrie** pomocí příkazu **Osa**. Referenční osa je nutná pro některé operace, např. pro kopírování prvků pomocí příkazu **Kruhové pole**.

PropertyManager nabízí v příkazu Osa následující možnosti:

- Jedna čára/hrana/osa.
- Dvě roviny
- Dva body/vrcholy
- Válcová/kuželová plocha
Tyto nabídky také napovídají, jaké entity je nutno do dialogového pole zadat a v grafickém poli označit.

MODELOVÁNÍ DÍLŮ.

Prvky
Prvky jsou jednotlivé příkazy (funkce), jejichž vhodnou kombinací a pořadím vytvoříme požadovaný tvar virtuálního modelu – Díl.

Existují tyto typy prvků:
- Objemové prvky - ty najdeme v nabídce Prvky.
- Plošné prvky - ty najdeme v nabídce Plochy.
- Oborově zaměřené prvky - ty najdeme v nabídkách Svařování, Formy, Plechový díl, Montážní díl.

Pro některé prvky je základem skica (Přidání vysunutím, Přidání rotací, …), pro jiné prvky je nutné mít vymodelované objemové nebo povrchové tělo (Skřepina, Zaoblit, Zkosit, Kopule, Pole, …). Proto můžeme prvky rozdělit na základní a závislé.

Prvky najdeme:
- V záložce CommandManageru Prvky.
- Ostatní závislé prvky. Základem je objemové nebo povrchové těleso.

- V hlavní nabídce Vložit najdeme pod jednotlivými roletovými nabídkami ikony prvků objemových, povrchových i oborově zaměřených.

- V kontextovém panelu nástrojů, klepneme-li pravým tlačítkem myši na grafické ploše v blízkosti vytvořené skici

- V panelu nabídek → Nástroje → Vlastní → Příkazy najdeme kompletní nabídku prvků objemových, ale i dalších podle našich požadavků
Velmi často lze jeden model vytvořit několika způsoby, záleží pouze na schopnostech a návycích konstruktéra, jaký postup bude volit, důležitý je i účel, k jakému bude daný díl vytvářen, a jeho složitost.

25. lekce

UŽIVATELSKÉ PROSTŘEDÍ A MATERIÁL DÍLŮ

Uživatelské prostředí a základní pojmy

PropertyManager se zobrazí, pokud pracujeme právě s vybraným příkazem nabídky Prvky. Pomocí záložek můžeme zadávat požadované parametry. Jakmile dokončíme modelování prvku potvrzením OK, automaticky se zapíše do stromu FeatureManageru, který se zobrazí.

Určení a úprava materiálu dílu

Materiál dílu definujeme pomocí Stromu FeatureManageru, označíme-li pravým tlačítkem myši záložku Materiál. Zobrazí se výběr materiálů. Pokud nabídka vyhovuje našim požadavkům, vybereme vhodný materiál, pokud nabídka neobsahuje potřebný materiál, zvolíme položku Upravit materiál. Pro užší výběr klepneme na + u požadovaného typu materiálu, tím se nám
otevře podrobnější nabídka, v ní zvolíme materiál, který odpovídá našim požadavkům, na kartě vzhled si můžeme prohlédnout, jak bude vybraný materiál vypadat, při volbě karty Vlastnosti si můžeme prohlédnout základní fyzikální vlastnosti vybraného materiálu.

Zaoblení/zkosení dílu

Tyto příkazy najdeme v roletové nabídce v CommandManageru, jsou to nejpoužívanější příkazy závislých prvků pro úpravu prvků základních.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

- Nakreslíme kvádr s vybráním uprostřed dle následující skici:

- Po ukončení skici použijeme v záložce Prvky Příkaz Přidat vysunutím, nyní musíme označit horní obdélníkovou plochu a vysuneme ji o 35 mm (vysunutí zadáme v propertyManageru ve směru č.1), vysunutí odsouhlasíme zeleným zatržítkem OK.

- V dalším kroku rozbalíme + u položky Přidat vysunutím 1 a označíme Skica 1.

- Klepneme na příkaz Přidat vysunutím.

- Na grafické ploše vybereme střední ,největší plochu a v PropertyManageru zadáme velikost vysunutí 20 mm → OK.
- Opět rozbalíme vysunutí 1 v PropertyManageru a označíme skicu1, klepneme na příkaz Přidat vysunutím, označíme spodní lichoběžníkovou plochu skici a vysuneme ji o 50mm.

Vlastní zaoblení můžeme provádět ručně nebo automaticky pomocí FilletXpertu. Do těchto režimů se dostaneme označením jedné ze záložek levým tlačítkem myši, vybereme-li záložku Ručně, můžeme volit různé typy zaoblení, poloměr můžeme volit konstantní nebo proměnný.

- V CommandManageru vybereme příkaz Zaoblit
- V PropertyManageru označíme záložku Ručně, jako Typ zaoblení vybereme Konstantní poloměr, změníme hodnotu poloměru zaoblení na 5mm a myší označíme dvě protilehlé hrany (ty se vypíší do Položky k zaoblení). Ve spodní části zatrhneme Plný náhled.
26. lekce

ZAOBLENÍ HRAN 3D DÍLŮ

Vlastní zaoblení můžeme provádět ručně nebo automaticky pomocí FilletXperti. Do těchto režimů se dostaneme označením jedné ze záložek levým tlačítkem myši, vybereme-li záložku Ručně, můžeme volit různé typy zaoblení, poloměr můžeme volit konstantní nebo proměnný.

- V CommandManageru vybereme příkaz Zaoblit
- V PropertyManageru označíme záložku Ručně, jako Typ zaoblení vybereme Konstantní poloměr, změníme hodnotu poloměru zaoblení na 5mm a myší označíme dvě protilehlé hrany (ty se vypíší do Položky k zaoblení). Ve spodní části zatrhneme Plný náhled.
Pokud označíme plochu, na kterou navazují hrany, a zadáme-li parametry zaoblení, **SolidWorks** zaoblí související hrany, aniž bychom je museli označovat.

- Pokud chceme zaoblit pouze hranu tak, aby nebyly zaobleny hrany s ní související, zatrhneme v záložce **Typ zaoblení** možnost **Mezi plochami**. Po zadání poloměru označíme klepnutím plochy, mezi kterými má být zaoblení vytvořeno, musíme přitom respektovat barevné schéma oken polí, která jsou shodná s označenými plochami modelu.

- Pokud potřebujeme zaoblit vrcholy hran jinými poloměry, než jakými jsou zaobleny hrany, použijeme záložku **Parametry přechodu**.

- Označíme hrany tří směrů na sebe kolmých a zadáme konstantní poloměr zaoblení 5 mm.

- V PropertyManageru otevřeme záložku **Parametry přechodu**.

- Do okna **Vzdálenost** zadáme 15 mm.

- Klepneme myší do okna **Vrcholy přechodu**- okno změní barvu.
- Označíme levým tlačítkem myši vrchol modelu na grafické ploše, kterému chceme přiřadit jiný poloměr, u vrcholu se zobrazí okna s nepřiřazenými přechody pro tři strany.

- Nyní můžeme klepnout na příkaz zadat vše, SolidWorks načte zadanou vzdálenost přechodů a na grafické ploše se objeví náhled stejného zaoblení pro všechny tři směry, současně se velikost zadané vzdálenosti přiřadí jednotlivým hranám v okně Vzdálenosti přechodu pod označením E1,E2,E3.

- Můžeme také po označení vrcholu přechodu dvojklikem na políčko Nepřiřazený zadat vzdálenost pro jednotlivé tři hrany, u každé hrany jinou, např (5 mm, 12 mm, 30 mm)
Také můžeme na hranách tělesa modelovat nepravidelné zaoblení

- Klepneme a příkaz **Zaoblit**.

- V otevřeném **PropertyManageru** v záložce **Typ zaoblení** zatrhneme **Proměnný poloměr**.

Otevře se záložka Parametry proměnného poloměru, označíme myší na grafické ploše hranu dílu, kterou chceme zaoblit. S označením hrany se zobrazí odkazy Proměnný poloměr v obou koncových bodech hrany a současně se zapiší jako vrcholy do okna Připojené poloměry v záložce Parametry proměnného poloměru.

Poloměr můžeme zadávat dvěma způsoby:

- V grafické ploše klepnutím na nápis Nepřiřazený a zadáním poloměru.

- V PropertyManageru klepnutím na jeden Vrchol (V1,V2) a zadáním poloměru.

![Image](image-url)
27. lekce

MODELOVÁNÍ NA PLOCHÁCH DÍLU

ZÁKLADNÍ OBJEMOVÉ PRVKY

Modelování na plochách dílu

Budeme vytvářet jednoduchý klíč pro instalátory:

- V horní rovině nakreslíme skicu osmiúhelníku (průměr vepsané kružnice je 110 mm) a dvou soustředných kružnic průměru 130 mm a 140 mm.

- Označíme jednu hranu osmiúhelníka a přidáme vazbu **vertikální**

- Nyní provedeme první přidání vysunutím, označíme plochu mezi osmiúhelníkem a první kružnicí a zadáme ve složce směr č. 1 hloubku vysunutí 6 mm odsouhlasíme → OK.

- Poté rozklikneme ve **FeatureManageru** Vysunutí 1 a označíme **Skicu 1**.

- Potom znovu klikneme na **Přidat vysunutím**, označíme mezikruží a zadáme hloubku 25 mm a odsouhlasíme → OK.
- Na horní ploše obruby osmiúhelníka narýsujeme skicu držadla, pro kreslení si otočíme plochu do pohledu, nakreslíme a zakótujeme pouze horní polovinu, pro kreslení spodní poloviny použijeme příkaz Zrcadlení entit.

- Po odsouhlasení skici provedeme nejprve vymazání osy držadla a spojnici středu osmiúhelníku a levého horního bodu (tuto úsečku jsme zakreslili pouze pro stanovení začátku držadla),
- nyní provedeme vysunutí plochy držadla o 10 mm nahoru → OK.
- Označíme pravou plochu držadla, pro lepší viditelnost zvolíme pravý pohled.
28. LEKCE
OSMIHRANNÝ KLÍČ

Modelování na plochách-8mi hranný klíč

- Načrtneme skicu obdélníku s počátkem v rohu, umístění obdélníku zvolíme tak, aby jeho svislé hrany byly kolineární se zadními hranami držadla (jsou v zákrytu). Při skicování je vhodné si skicu dostatečně zvětšit z hlediska kótování výšky obdélníku (4 mm).

- Nyní opět zvolíme pro lepší názornost trimetrický pohled a vybereme příkaz Odebrání vysunutím, klepneme v roletové nabídce v záložce pro Směr č.1 s nápisem Naslepo a označíme možnost Po plochu, náhled vysunutí zmizí.
- Levým tlačítkem myši označíme vnější válcovou plochu obruby osmiúhelníku (plocha se zapiše do PropertyManageru), náhled nám ukáže směr odebrání, odsouhlasíme jej → OK.
- Nyní provedeme zaoblení svislých hran držadla poloměrem 18 mm.

- Označíme horní plochu držadla, založíme na ní skicu a pomocí příkazu Odsadit entity načrtneme obrys držadla ve vzdálenosti 10 mm od jeho hran (směrem dovnitř).
- Následně vytvoříme prolis do hloubky 2 mm pomocí příkazu Odebrat vysunutím.
- Model instalátérského klíče dokončíme zaoblením konstantním poloměrem 1 mm obou prvků odebraním vysunutím Ty můžeme označit ve FeatureManageru a vnějších hran držadla.
29. lekce
MODELOVÁNÍ VE DVOU ROVINÁCH

Modelování ve dvou rovinách procházejících počátkem

- založíme nový díl, vybereme horní rovinu a nakreslíme skicu osmiúhelníku s vepsanou kružnicí o průměru 110 mm a středem v počátku souřadnic.
- Vybereme jednu z hran a přidáme svislost do vazeb, tím vytvoříme osmiúhelník

- Pro vytvoření modelu ukončíme skicu a zvolíme → Přidání vysunutím → v otevřeném dialogu zaškrtneme → Tenkostěnný prvek a zkontrolujeme, že jde o vysunutí směrem ven (musí
zachován vnitřní rozměr 110 mm, tj. průměr vepsané kružnice), zadáme hodnotu vysunutí → 2 mm. Potom, aniž bychom ukončili okno vysunutí, zadáme do směru č.1 → Naslepo → 20 mm a do směru č.2 → Naslepo → 30 mm. →OK

- Potom označíme Přední rovinu a založíme skicu, nakreslíme kružnici se středem v počátku souřadnicového systému o průměru 20 mm (do okna ovšem zadáváme poloviční rozměr poloměru 10mm).→ OK, Ukončíme skicu.
- Pro vytvoření souosých otvorů zvolíme příkaz →Odebrání vysunutím, v zobrazeném dialogu vybereme Od → rovina skici, ve směru č. 1 vybereme →K dalšímu, ve směru č. 2 → K dalšímu OK.

- Nyní zakreslíme osy, jednak osu celého klíče, za druhé osu obou otvorů. K tomu použijeme Referenční geometrii.
- Protože jsme skici osmiúhelníku umístili do počátku souřadnicového systému můžeme pro zadání osy využít po zadání → Referenční geometrie vybrat → Bod a Plocha/rovina. Pro jejich vybrání si otevřeme FeaturyManager a v něm označíme počátek i horní rovinu, obě se zapíší do okna výběru pro vytvoření osy a osa se žlutě vyznačí ve skice, → OK.
- Nyní opět vybereme → Referenční geometrii → Osa → v dialogovém okně označíme → Bod a Plocha/rovina.

- Po otevření FeatureManageru vybereme v něm opět počátek a plochu osmiúhelníku s otvorem, SolidWorks nám naznačí žlutou barvou osu, → OK.

- Na závěr můžeme obě osy prodloužit chycením za jejich konce a výsledek si prohlédneme ve čtyřech pohledech.
30. lekce
ŠESTIHRRANNÝ KLÍČ – SAMOSTATNÁ PRÁCE Č. 3

Samostatná práce č.3

Vytvořte šestihranný dvouklíč dle zadaných parametrů, výsledek potom pomocí PrtScr zkopírujete do textového editoru, označte jej svým jménem a odešlete jej na mailovou adresu zdezelezny@seznam.cz, do předmětu zapište: Třída, příjmení,Práce č.3
31. lekce

MODELOVÁNÍ VE TŘECH ROVINÁCH

Modelování ve třech rovinách procházejících počátkem.

Budeme modelovat příložku dle obrázku

- Založíme Nový díl a v Přední rovině načrtneme skicu dle přiloženého obrázku, počátek souřadnicového systému musí ležet ve středu kružnice, od něho budeme vysouvat prvky v jednotlivých rovinách.
- Jako první budeme vysouvat válec, vybereme všechny obrysy kružnice a zadáme Od roviny skici → Naslepo, pro směr č.1 zadáme 40mm pro směr č.2 zadáme 30mm → OK.
- Jako druhé vysunutí zvolíme podstavu, od Roviny skici (opět musíme označit všechny části podstavy, která je rozdělena válcem) → Symetricky o vzdálenost 60mm → OK.

V horní části skici načrtáme v počátku souřadnic kružnici o průměru 20mm a po následném odsouhlasení skici → OK vysuneme válec o 20mm naslepo od roviny skici nahoru → OK.
32. lekce
MODELOVÁNÍ – PŘÍLOŽKA

Modelování ve třech rovinách- příložka
Toto je výchozí pozice pro tvarování v dalších krocích

- Nyní nakreslíme v pravé rovině skicu kružnice se středem v počátku souřadnic o průměru 20 mm a po odsouhlasení skici vysuneme naslepo pouze horní polovinu válce na vzdálenost 40 mm od roviny skici → OK.
Toto je výsledek přidání vysunutím

- V plochách předního a horního válce postupně naskicujeme kružnice, v předním válci o průměru 16mm a v horním válci 12,5mm, po odsouhlasení každé skici provedeme Odebrání vysunutím, u většího průměru skrz vše, u menšího vysuneme Po plochu, tu potom označíme levým tlačítkem myši (vnitřní plochu ležatého válce.

- V posledním kroku provedeme zaoblení 5 ti označených hran poloměrem R 5mm a výsledný produkt si prohlédneme pomocí zobrazení ve čtyřech pohledech současně.
Pohled pomocí řezu:
Použití osy rotace

Budeme vytvářet prostorový model pomocí osy rotace, a to jak vnější obrys, tak i vnitřní tvar.
- Založíme nový díl, v přední rovině narýsujeme skicu kotouče s vnitřním vybráním dle obrázku, okotováním upřesníme rozměry, skicu ukončíme → OK.

- Z nabídky Prvky zvolíme nástroj Přidání rotací, SolidWorks nám nabídne automatické uzavření skici, necháme obrys uzavřít → OK.
- Skicu necháme Jednosměrně rotovat okolo osy o 360°, zkontrolujeme, zda není zatržen Tenkostěnný profil, přidání rotaci potvrďme tlačítkem → OK.
- Kotouč otočíme do předního nebo kolmého pohledu, ve FeatureManageru vybereme přední rovinu a otevřeme skicu, nyní nakreslíme skicu vnitřního vybrání dle obrázku, skicu ukončíme → OK.
- Nyní model otočíme do dimetrického pohledu a z nabídky Prvky vybereme Odebrání rotací, zvolíme Jednosměrné o 360°→ OK. Výsledek operace si prohlédneme, máme možnost Drátěný program, můžeme také zvolit nástroj Řez (z panelu nástrojů Pohledy).

- Nyní zkosíme vnější pravou hranu kotouče o průměru 80mm 10x45°a následně pomocí nástroje Referenční geometrie vytvoříme osu rotačního kotouče.
Dalším krokem je zaoblení vnitřních hran obou vybrání 5 x φ 35 mm, rádius R 2 mm, abychom mohli vnitřní hrany pro zaoblení označit levým tlačítkem myši, můžeme díl převést do drátěného režimu, nebo zvolíme nástroj Řez (z panelu nástrojů Pohledy).

- Nakonec zkosíme hrany dutiny na obou čelech dílu 2 x 45°.

Ve výsledku si můžeme díl prohlédnout pomocí 4 pohledů v řezu.
Vytvoření plného rotačního objemového těla vyžaduje rotaci uzavřené skici např. plnou čarou. Pokud toto uzavření nenakreslíme a nepoužijeme Vybrané obrysy, nabízí nám SolidWorks pomocí dialogového okna dvě možnosti:
- Zvolíme-li ANO, vytvoříme plné objemové těleso.
- Zvolíme-li NE, vymodelujeme těleso jako tenkostěnný prvek

35. lekce
ZKOSENÍ VNĚJŠÍHO ŠESTIHRANU

Zkosení hran vnějšího šestihranu

Při modelování vnějšího zkosení na šestihranu (např. hlava šroubu) použijeme nástroj odebrání rotací, budeme vlastně vycházet z praxe, osoustružení hlavy soustružnickým nožem. Ten nahradíme pravoúhlým trojúhelníkem a pomocí něho a osy rotace šestihranu odebereme materiál, a tím vytvoříme zaoblení hran.
- → Nakreslete skicu šestihranu v horní rovině a se středem v počátku souřadnicového systému, průměr vepsané kružnice je 54 mm.
- Nyní provedeme vysunutí šestihranu od roviny skici o 20 mm.
- V dalším kroku si skicu otočíme do přední roviny (rovina musí procházet některým vrcholem šestihranu) a nakreslíme pravoúhlý trojúhelník, jeho strany musí být kolineární s hranami šestiúhelníku, rozměry dle zakotování.
Určení a úprava materiálu dílu
Materiál dílu definujeme pomocí Stromu FeatureManageru, označíme-li pravým tlačítkem myši záložku Materiál. Zobrazí se výběr materiálů. Pokud nabídka vyhovuje našim požadavkům, vybereme vhodný materiál, pokud nabídka neobsahuje potřebný materiál, zvolíme položku Upravit materiál. Pro užší výběr klepneme na + u požadovaného typu materiálu, tím se nám otevře podrobnější nabídka, v ní zvolíme materiál, který odpovídá naším požadavkům, na kartě vzhled si můžeme prohlédnout, jak bude vybraný materiál vypadat, při volbě karty Vlastnosti si můžeme prohlédnout základní fyzikální vlastnosti vybraného materiálu.

- Ukončíme skicu a z nabídky prvky vybereme nástroj Odebrání rotací → OK.
36. lekce

ZKOSENÍ HRAN VNITŘníHO ŠESTIHRAzU

Zkosení hran vnitřního šestihranu

Kuželové zakončení vnitřního šestihranu můžeme vymodelovat podobným způsobem jako v předchozím příkladu, pomocí příkazu → Přidání rotací.

- V horní rovině načrtneme skicu šestiúhelníku s průměrem vepsané kružnice 36 mm a kružnicí o průměru 54 mm.
Pro vytvoření dílu vysuneme vybrané obrysy, vnitřní šestihran o 5 mm od roviny skici a meziprostor mezi šestihranem a kružnicí o 40 mm,

- Pomocí nástroje Referenční geometrie narýsujeme osu dílu. Založíme na přední rovině skicu, otočíme ji do kolmého pohledu a model převedeme do drátového režimu. Do modelu narýsujeme skicu trojúhelníku dle obrázku. Vrchol trojúhelníku musí být mírně vyosen (leží 0,5
mm od osy), protože při použití nástroje Přidat rotaci by SolidWorks hlásil chybu a přidání by nepovolil.

- Nakonec zkosíme obě vnější hrany válcové plochy 4x45° a vnitřní hranu šestihranu Odebráním rotací dle obrázku.
37. - 38. lekce
SAMOSTATNÁ PRÁCE 4 - HRANOL S VNITŘNÍM ŠESTIHRANEM

Samostatná práce 3- Hranol s vnitřním šestihranem

Nakreslete skicu dle obrázku

Postupně vytvářejte díl pomocí nástroje Přidat vysunutím, hodnoty vysunutí jsou zadány v PropertyManageru.

1.
3.
4.

5.

Integrovaná střední škola polygrafická, Brno, Šmahova 110
Nyní proveďte zkosení hran vnitřního šestíhranu, rozměry dle skici.
Proveďte zkosení vnějších hran dílu a obou konců válcového otvoru - 2x45°
Závěrečný výstup- Pohled na díl ve 4 pohledech
MODELOVÁNÍ TLAČNÉ PRUŽINY

Modelování tlačné pružiny.

- Skicu založíme v horní rovině, nakreslíme kružnici o průměru 36 mm.
- Přepneme do záložky Prvky a z nabídky Křivky vybereme příkaz Šroubovice/spirála.

- Náhled si otočíme do izometrického pohledu. V PropertyManageru budeme zadávat jednotlivé parametry budoucí pružiny:
 - Konstantní stoupání
 - Stoupání 9 mm
 - Počet otáček 8,5
 - Počáteční úhel 0°

 Volba počátečního stupně souvisí se začátkem pružiny (trasou) a rovinou, na kterou budeme kreslit skicu (profil). Zadané parametry potvrdíme tlačítkem →OK a skicu ukončíme.
 - Označíme v PropertyManageru Pravou rovinu.
- V koncovém bodu šroubovice, který leží v počátečním úhlu 0° nakreslíme skicu kružnice o průměru 4 mm. Skicu 2 ukončíme.
- V dalším kroku upravíme dosedací plochy pružiny v dolní a stejným způsobem i horní části pružiny.
- V přední rovině narýsujeme skico obdélníka, který překryvá spodek (vršek) pružiny. Nepřekrytý zbytek pružiny je 0,2 mm. Skicu ukončíme.
- V záložce Prvky zvolíme nástroj Odebrat vysunutím, v prvním i druhém směru vybereme Skrz vše → OK.
- To stejné provedeme s horním koncem pružiny.
- Nakonec vložíme pomocí Referenční geometrie osu pružiny a zobrazíme ji ve čtyřech pohledech.
Modelování s použitím referenční geometrie

- V horní rovině nakreslíme skicu dle obrázku. Skicu ukončíme.
- Na konci háčku vytvoříme referenční rovinu (úsečka + bod).

- Rovinu potvrdíme klepnutím na tlačítko → OK, následně si skicu otočíme do trimetrického pohledu.
- Skicu si pro lepší viditelnost zvětšíme a po založení nové skici nakreslíme v Rovině 1 kružnici o průměru 4 mm tak, aby její střed ležel v koncovém bodě skici háčku.
- Skicu opět ukončíme, přepneme do záložky Prvky a vybereme příkaz Přidat tažením po křivce.
- Označíme skicu kružnice, ta se zapíše do záložky Profil jako Skica 1 a trasa jako Profil. Otevřeme FeaturyManager, vybereme v něm Skicu1 (skica háčku), ta se zapíše jako Trasa a SolidWorks nám naznačí tažením po křivce vytvářený díl. Příkaz ukončíme stisknutím klávesy Enter.
43. – 44. lekce
KANCELÁŘSKÁ SPONKA – SAMOSTATNÁ PRÁCE Č.5

Modelování kancelářské sponky

Vymodelujte dle skici kancelářskou sponku s z drátu o průměru 3 mm.
Vytvořený díl zobrazte ve čtyřech pohledech, zkopírujte pomocí PrtSc do OpenOffice Writeru, uložte jej do své pracovní složky jako práci č.5. Tuto práci potom odešlete jako přílohu emailu na adresu zdezelezny@seznam.cz, předmět emailu zvolte: Třída, Příjmení, č. práce.
45. – 46. lekce
PLECHOVÝ DÍL - TVORBA VÝKRESU

Modelování plechových dílů - z otevřeného profilu skici pomocí příkazu vložit Plech. Díl.

- Z nabídky záložek pod CommandManagerem vybereme záložku Plechový díl.
- Z nových nabídek CommandManageru označíme Základní plech/ouško.
- Vybereme přední rovinu a v ní narýsujeme danou skicu, plechový díl rýsujeme v ohnutém stavu.
- Po ukončení skici se automaticky vytvoří příslušný plechový díl vysunutím a v tabulce PropertyManageru můžeme zadat potřebné parametry:
 - délka vysunutí 15mm, naslepo
- tloušťka plechu T1 0,4mm
- nezadané poloměry ohybu R 1mm.
- Po odsouhlasení parametrů základního plechu vybereme jeho materiál, např. mosaz.

- Ve FeatureManageru je nyní zapsán základní plech a rozvinutý tvar 1.
- Rozbalíme kliknutím na tlačítko + a po kliknutí pravým tlačítkem myši na Rozvinutý tvar 1 vybereme položku Vlastnosti prvku.
- Nyní v okně Vlastnosti prvku zrušíme zaškrtnutí u vlastnosti Potlačený a po odsouhlasení se plechový díl rozvíne
Rozvinutý tvar plechového dílu

Nyní vytvoříme výrobní výkres dílu.

- Ve FeatureManageru se přepneme do základního plechu 1.
- Z hlavní nabídky Soubor vybereme Vytvořit výkres z dílu/sestavy
- V okně Formát/velikost listu vybereme A3 420 x 297mm.
- Po odsouhlasení výběru velikosti listu se prázdný list zobrazí na pracovní ploše a v pravé části bude otevřené okno Paleta pohledů.
- Z tohoto okna pomocí myši přetáhneme do výkresu pohledy Přední, pod něj umístíme rozvinutý tvar a napravo izometrický pohled.
- Na závěr zvolíme z CommandManageru Inteligentní kótu a okótujeme výkres.
Zakótovaný hotový výkres plechového dílu
47. – 48. lekcí

PLECHOVÝ DÍL PŘEVEDENÍM Z 3D MODELU

Modelování plechových dílů převedením 3D modelu.

SolidWorks umožňuje vymodelovat objemový díl pomocí nabídky Prvky a následně na něj vhodnou úpravou převést díl plechový.

- Vytvoříme krabičku bez víka pomocí vysunutí obdélníku o rozměrech 45 x 30 mm, vysuneme jednosměrně o 15 mm.
- Převedeme model pomocí skořepiny s 0,5 mm tlustou stěnou.
- Vytvoříme mezeru mezi dvěma hranami, využijeme příkaz *Nastřihnout* v nabídce *Plechový díl*, přitom označíme levým tlačítkem myši postupně všechny obvodové hrany (přitom nezáleží na tom, zda se jedná o vnitřní nebo vnější hranu), šipky musí být zobrazeny v obou směrech.
- Všechny označené hrany musí být zapsány v *PropertyManageru Nastřížení* v položce *Parametry nastřížení*. Mezeru nastřížení *G* zadáme 0,1 mm.
- Parametry nastřížení můžeme upravit v záložce *Parametry nastřížení*, klepnutím levým tlačítkem myši na příkaz *Změnit směr* nebo na šipku v modelu na grafické ploše.

- Vkládání ohybů v programu *SolidWorks* převede tento příkaz objemový díl na díl plechový.
Věnování hran dna krabičky označíme vnitřní spodní plochu modelu, z nabídky Plechový díl zvolíme příkaz Vložit ohyby. V PropertyManageru Ohyby se do záložky Parametry ohybu zapsala označená plocha<1>.

Nyní zadáme poloměr ohybu 0,5 mm a v položce Automatické odlehčení vybereme možnost Obdélník. Ohyby potvrdíme a objeví se oznámení o vytvoření auto odlehčení → OK.

Tyto ohyby se zapíší do FeatureManageru jako dva Rozvinuté ohyby1.

Výsledek uložíme jako Krabička 1 do složky školní práce.
- Nyní provedeme rozvin plechového dílu Krabička 1.
- Pravým tlačítkem myši označíme ve FeatureManageru Rozvinutý tvar 1, rozvine se nám okno Prvek (Rozvinutý tvar1) a v něm klepneme levým tlačítkem myši na položku Vlastnosti prvku.
Zvětšení Odlehčení rohů

Možnosti zakotování rozvinu krabičky

Tvorba výkresové dokumentace
- výběr formátu výkresu- A3
Přetažení jednotlivých pohledů z knihovny pohledů:
- Pohled zepředu - Nárys
- Pohled shora - Půdorys
- Rozvinutý tvar
- Izometrický pohled

V konečné fázi provedeme okótování potřebných rozměrů
49. – 50. lekce

TVORBA KRABIČKY S VÍKEM

Krabička s víkem

- Vytvoříme krabičku bez víka pomocí vysunutí obdélníku o rozměrech 40 x 40 mm, vysuneme jednosměrně o 25 mm.
- Z nabídky Plechový díl zvolíme příkaz Převést na plechový díl.
- Označíme spodní plochu kvádru, ta zůstane na místě, když krabičku rozložíme. (musíme si kvádr otočit do patřičné polohy.

![Illustration of a box with a flap]

- Tato plocha se zapíše do PropertyManageru jako plocha <1>
- V záložce PropertyManageru zadáme tloušťku T1 0,2 mm a výchozí poloměr ohybu R 1 mm.
- Jako hrany ohybu označte postupně všechny čtyři hrany spodní obdélníkové plochy a zadní delší hranu horní plochy obdélníku.
- Kromě označených hran pro ohyb se automaticky zapíší do PropertyManageru i hrany pro nastřižení.
- V záložce **Skici nastřižení** zadáme velikost mezery 1 mm a v záložce **Automatické odlehčení** zvolíme odlehčení **obdélníkové** (velikost mezery nastřižení můžeme volit pro každou hranu samostatně).
- Fialovou barvou jsou označeny hrany pro nastřižení, růžovou pro ohyb.
- Nyní odsouhlasíme příkaz **Převést na plechový díl** → **OK**.
- Rozvin získáme příkazem **Rozvinout** v **CommandManageru**

![Diagram](image)

Zvětšení obdélníkového odlehčení u nastřižených hran.

Přidání lemů

Knihařské výrobky se vyrábí lepením, proto se přidávají k některým plochám lemý nebo obruby (přidavky ploch).
- Označíme všechny hrany, ke který chceme připojit lemý a zvolíme příkaz Lem z hraný.
- Zobrazí se náhled lemý.
- Provedeme kontrolu orientace lemý, změnit jej můžeme kliknutím na šipku u lemý
- V kolonce Parametry lemý zrušíme Použít výchozí poloměr ohybu zadáme novou hodnotu 0,5mm, úhel ohybu 90°, délka lemý: Naslepo: D 20mm,
51. – 52. lekce

TVORBA LEMŮ

Tvorba lemů, ohybů a obrub

- V horní rovině nakreslete skicu dle obrázku, okötujte ji.
- Převeďte skicu na plechový díl, parametry
 - Tl.0,4mm
 - délka vysunutí naslepo 50mm
 - poloměr ohybu 0,3mm
- odsouhlasíme parametry plech. Dílu → OK.

Tvorba lemů

Pomocí tohoto nástroje přidáme do plechového dílu stěnu (lem) k vybrané hraně nebo i více hranám, které musí být lineární. Tloušťce automaticky připojí ke tloušťce dílu.
- Označíme postupně spodní boční hrany dílu (pomocí CTRL +) a zvolíme příkaz Lem z hrany.
- Označené hrany se zapíší do Parametrů lemu.
- Zapíšeme nebo zkontrolujeme úhel lemu - 90°.
- Délku lemu zvolíme Naslepo 20 mm.
- Umístění lemu vyznačíme ikonu Materiál vně.

Všechny lemy zapsané v kolonce Parametry lemu mají stejné parametry.
- Zvolíme znovu Příkaz Lem z hrany a označíme horní přední hranu.
- Zadáme parametry lemu:
 - úhel 110°
 - délka lemu 30 mm
 - materiál vně
- Klikneme na tlačítko Upravit profil lemu.
53. – 54. lekce

TVORBA OHYBŮ, OBRUB A VÝKRES.

DOKUMENTACE

Tvorba ohybů, obrub

- nakreslete a okótujte skicu dle obrázku.
- Převeď'te ji na plechový díl pomocí příkazu Zákl.plech/ouško.
- Tloušť'ku plechu zvolíme 0,4 mm.
- Otočíme plech do horního pohledu a nakreslíme skicu úsečky, která prochází středem poloměru, je rovnoběžná se svislou hranou a horní a dolní hranou plechu.
- Zvolíme příkaz Ohyb ze skici, označíme nakreslenou úsečku.
- Umístění ohybu je materiál uvnitř, úhel ohybu 60° a označíme plochu obdélníku (ta zůstane nehybná).

- Nakreslíme v horním pohledu skicu úsečky dle obrázku.
- Zvolíme příkaz Vybočení a zadáme parametry dle obrázku → OK,
- Pomoci příkazu Obruba můžeme zpevnit zakončení plechu, parametry volíme dle obrázku

- Příkazem Rozvinout si prohlédneme rozvinutý tvar plechového výrobku a následně vytvořený díl převedeme na výkresovou dokumentaci.

- Díl musíme uložit a ze souboru Nový zvolíme příkaz Vytvořit výkres z dílu.
- Vezmeme na vědomí neplatnost šablon → OK.
- Z roletové nabídky vybereme formát A3 → OK.

- Z palety pohledů si vybereme nejvhodnější pohledy na výrobek, při přetažení prvního se nám podle pohybu myši v daném směru objevují další pohledy, ukončíme výběr pohledů → OK, přemístíme izometrický pohled pod nárys a půdorys a do pravé části výkresu umístíme rozvinutý tvar.
55. – 56. lekce

SPONKA NA KLIPIRÁM I

Sponka na klip rám

- Nakreslíme v přední rovině skicu dle obrázku.
- Vysunutím z ní vytvoříme plechový díl, hl.vysunutí zvolíme 14mm, tloušťku plech zadáme 0,2mm, poloměr ohybu R 0,5mm.
- Jako materiál přiřadíme hliník.
- Na horní ploše základního plechu nakreslíme symetrickou skicu pro odebrání rohů, 4x4,5mm, tak, aby sražené hrany byly od sebe 6mm
- Rohy odebereme vysunutím

- na spodním konci pravé plochy, skloněné pod úhlem 45°, nakreslíme rovněž symetrickou skicu vnitřních kruhových výsečí o poloměru R3mm pro odebrání rohů.
- Rohy odebereme rovněž vysunutím.
- označíme horní hranu plechu a zvolíme příkaz Lem z hrany. Hrana se automaticky zapiše do parametrů lemu jako Hrana<1>.
- Zobrazí se náhled lemu a nyní zadáme potřebné parametry lemu.
- Provedeme kontrolu směru lemu, popřípadě jeho směr změníme
- Poloměr ohybu R 0,1mm a velikost mezery G 1mm, úhel ohybu lemu 100°, délka lemu 8mm naslepo.
- V položce Umístění lemu zvolíme Ohyb vně.
- Podobným způsobem budeme vytvářet i další lemy.

- Nyní označíme koncovou hranu spodního lemu a příkazem obruba přidáme další materiál k lemu (má význam jako zesílení tlouštky plechu).
Tenkostěnné odebrání v plechovém dílu
- Na horní ploše plech. Dílu narýsujeme pomocí příkazu zrcadlení skicu dle obrázku.

- Tuto skicu použijeme k tenkostěnnému odebrání vysunutím.
- Parametry vysunutí volíme tak, aby mezera byla 0,25mm
- V dalším kroku vytvoříme lem z hrany na pravé koncové ploše, zadáme příslušné parametry, stejně jako u předchozích lemů.
- Délku lemu zvolíme 5mm a úhel ohybu 15°, zvolíme upravit plochu lemu.
- Hranaté rohy lemu zaoblíme pomocí příkazu Zaoblit entity, poloměr zaoblení zvolíme R 4 mm.

- Na horní ploše odebrané části nakreslíme skicu přímky 0,1mm vzdálenou od krajní zlomové hrany mezi horní vodorovnou a šikmou plochou (pro přesné narýsování si musíme skicu více násobně zvětšit). Tato skica bude použita jako pomocná pro tvorbu následného ohybu.
- Zvolíme nástroj Ohyb ze skici, označíme plochu pro ohyb, ta se zapíše do parametrů ohybu jako plocha <1>.
- Zadáme úhel ohybu 20°, zkontrolujeme směr ohybu a v záložce umístění ohybu zadáme Materiál uvnitř.
- na vyhnuté ploše nakreslíme čáru rovnoběžnou s hranou dle skici
- přidáme ohyb ze skici pod úhlem 90° směrem vzhůru Poloměr ohybu 0,5mm, ohyb vně.
- Příkazem rozvinout získáme rozvinutý tvar plechového polotovaru pro výrobu sponky

Čtaři základní pohledy na hotovou sponku
59. – 60. lekce

TVORBA HÁČKU

Tvorba háčku
- nakreslíme skicu dle obrázku.
- Vytvoříme základní plechový díl o tloušťce 2mm.
- Na horní plochu plechu nakreslíme skicu přímky, 10mm od počátku vystřižení.
- Přidáme 2 ohyby pomocí příkazu Vybočení.
- Poloměr ohybu zadáme 3mm, délka vybočení 14mm, úhel vybočení 45°.
- Provedeme kontrolu směru vybočení, případně jej změníme.
- Z nabídky plechové díly vybereme příkaz Okrajový lem.
- Na plechovém dílu označíme zadní spodní hranu, v koncovém bodě se zobrazí rovina, která je kolmá k první hraně budoucího lemu, a její počátek.
- Na této rovině nakreslíme skicu přímky dlouhou 10mm.
- Klepnutím na příkaz Okrajový lem se zobrazí jeho náhled, vybereme parametry Ohyb vně, odsazení na konci 50mm
- Pro vytvoření okr.lemů na více hranách je nutno tuto hranu označit kliknout na ikonu pokračovat.

- Po dokončení provedeme rozvin plechu a vytvoříme výkres součásti.
61. – 62. lekce

KOMOLÝ KUŽEL- PLÁŠŤ

Komolý kužel

- V horní rovině nakreslíme kružnici o průměru 50mm, kterou přerušíme mezerou o velikosti 1mm.
- Vytvoříme rovinu 1, která je rovnoběžná s horní rovinou, je od ní vzdálená 60mm.
- Na ní založíme skicu a nakreslíme kružnici o průměru 80mm se stejnou mezerou, obě mezery musí ležet nad sebou.
- Z nabídky Plechový díl zvolíme příkaz Plechové spojení profilů.
- Označíme postupně obě skicí, ty se zapíší do záložky Profily, zadáme tloušťku 0,4mm a do nastavení čar ohybu zvolíme počet ohybů, na který se kuželvyrobi (16).
Můžeme provést rozvin pláště pomocí příkazu Rozvinout v Plechových dílech.

Díl uložíme jako plášť kom.kužele a zhotovíme technický výkres, v něm musí být pohled zepředu, shora, izometrický pohled a rozvin pláště.
ÚCHYTKA- SAMOSTATNÁ PRÁCE

Samostatná práce- Úchytka

- Nakresli skicu dle obrázku, proveď vysunutí o40mm.

- Na horní ploše nakreslete skici drážek a odeberte materiál vysunutím

- Přidejte k vybraným plochám okrajové lemy dle následujících skic.
- Vytvořte technický výkres A3, vyneste horní, přední, levý a izometrický pohled
- na druhý výkres vyneste rozvin úchytky a okótujte jej.
Samostatná práce- Úchytka

- Nakresli skicu dle obrázku, proved vysunutí o 40 mm.

- Na horní ploše nakreslete skici drážek a odeberte materiál vysunutím

- Přidejte k vybraným plochám okrajové lemy dle následujících skic.
- Vytvořte technický výkres A3, vyneste horní, přední, levý a izometrický pohled
- na druhý výkres vyneste rozvin úchytky a okótujte jej.
Seznam použité literatury:
